Микроэлектромеханические системы. История имплантируемой техники. мэмс

  • Здоровье гика
  • Микроэлектромеханические системы (МЭМС) представляют собой класс миниатюрных устройств и систем, изготовленных с помощью микрообработки процессов. Главный критерий при создании МЭМС – их размер. Обычно он не превышает 1 мм. Технологии МЭМС являются предшественником относительно более популярной области технологий, где размер устройств начинается от 100 нанометров.

    Изначально термин МЭМС был придуман для обозначения миниатюрных датчиков и исполнительных механизмов, действующих между электрическими и механическими областями устройства. Постепенно термин эволюционировал вместе с самими МЭМС и охватил широкий спектр различных микроустройств, изготовленных при помощи микромеханической обработки.

    Аналогичным образом термин «биомедицинские микроэлектромеханические системы » используется для обозначения науки и технологии производства микроприборов для биологических и медицинских применений. К ним относят биомедицинские датчики, имплантаты, микрохирургические инструменты и другие устройства.

    Изобретение точечного транзистора Уильямом Шокли , Джоном Бардином и Уолтером Браттейном в 1947 году послужило толчком к созданию МЭМС. Первый транзистор был размером с 1,3 сантиметра, что намного больше нынешних. Современные технологии позволяют создавать транзисторы диаметром около 1 нанометра.

    В 1954 году К.С. Смит обнаружил и описал пьезорезистивный эффект – изменение электрического сопротивления полупроводника или металла под воздействием механической нагрузки. В отличие от пьезоэлектрического эффекта, пьезорезистивный эффект вызывает изменения только в электрическом сопротивлении, а не в электрическом потенциале.

    В результате экспериментов стало понятно, что кремний и германий более чувствительны к давлению воздуха или воды, чем металлы. Во многих устройствах МЭМС, таких как тензодатчики, датчики давления и акселерометры, используется пьезорезистивный эффект в кремнии.

    Результатом открытия этого эффекта в полупроводниках стало начало промышленного производства датчиков давления на основе кремния. В 1959 году компания Kulite первой поставила их производство на поток.

    При создании транзисторов инженеры сталкивались с ограничением размера. Каждый транзистор нужно было подсоединять проводами ко всей остальной электронике. Тогда возникла необходимость в чем-то таком, что могло бы вмещать в себя транзисторы, резисторы, емкости и соединительные провода. Одна такая подложка позволила бы создавать миниатюрные устройства.

    Так в 1958 году два человека – Джек Килби из американской компании Texas Instruments и Роберт Нойз из Fairchild Semiconductor независимо друг от друга – собрали интегральную схему. Схема Килби состояла из транзистора, трех резисторов и одной емкости на кристалле германия – так называемая «твердая схема». Схема Нойза получила название «унитарной» и была сделана на кремниевом кристалле.


    Схема Килби

    В 1964 году компания Westinghouse Electric собрала первую серийную МЭМС. В устройстве, которое назвали резонансным затворным транзистором, были собраны механические и электронные компоненты. Транзистор работал как своеобразный частотный фильтр – пропускал электрические сигналы определенного диапазона.

    Первое коммерческое применение МЭМС не заставило себя долго ждать: в 70-х годах Курт Петерсон из лаборатории IBM собрал микромеханический датчик давления, который нашел применение в датчиках кровяного давления.

    В 1993 году компания Analog Devices стала первой серийно выпускать акселерометры МЭМС. В большинстве своем они использовались в автомобильной промышленности, но с годами область их применения расширилась до автономных систем навигации, игровых контроллеров, а также мобильных и компьютерных систем.

    Области применения технологии МЭМС

    В первые годы своего существования технология МЭМС оказалась революционной для многих областей науки, в том числе механики, акустики, оптики и других. Со временем появились уникальные решения и продукты в химической, биологической и медицинской области. МЭМС проникли в бытовую технику и электронику, автомобильную, биомедицинскую и аэрокосмическую промышленность.

    Датчики давления

    Первые микроэлектромеханические устройства, которые использовались 1980-х годах в биомедицинской промышленности – многоразовые датчики кровяного давления. Современные датчики давления МЭМС измеряют внутриглазное, внутричерепное, внутриутробное давление, а также используются во время ангиопластики.

    По данным ВОЗ, глаукома – вторая самая частая причина слепоты после катаракты. Имплантируемые датчики давления позволяют непрерывно мониторить внутриглазное давление у пациентов с глаукомой. В здоровом глазу поддерживается давление в диапазоне 10-22 мм ртутного столба. Аномально высокое давление (>22 мм) и его колебания рассматриваются в качестве основных факторов риска развития глаукомы.

    Это заболевание часто возникает без каких-либо заметных симптомов и боли, но может привести к необратимому и неизлечимому повреждению зрительного нерва. Без своевременного лечения страдает периферическое зрение и иногда наступает полная слепота.

    Один из датчиков, измеряющих ВГД, показан ниже. Он представляет собой одноразовую контактную линзу с элементом датчика давления МЭМС. Датчик включает в себя петлю антенны (золотое кольцо), микропроцессор специального назначения – чип 2х2 мм и тензорезисторы для измерения кривизны роговицы в ответ на изменения внутриглазного давления. Петля антенны получает питание от внешней системы мониторинга и передает информацию обратно в систему.

    Инерциальные датчики

    Акселерометры МЭМС используются в дефибрилляторах и кардиостимуляторах. Пациенты, страдающие от учащенного или хаотичного сердцебиения, зачастую подвержены наиболее высокому риску остановки сердца или сердечного приступа.

    Кардиостимулятор поддерживает нормальное сердцебиение путем передачи электрических импульсов к сердцу. В современных устройствах используются МЭМС-акселерометры, которые регулируют частоту сердечных сокращений в соответствии с физической активностью пациента.

    Кроме того, инерциальные датчики МЭМС – акселерометры и гироскопы – использовались для разработки одной из самых необычных инвалидных колясок iBOT Mobility System. Сочетание нескольких датчиков позволяет пользователю управлять инвалидным креслом и регулировать высоту кресла, заставляя коляску балансировать на двух колесах. Таким образом человек в коляске может взаимодействовать с другими людьми лицом к лицу.

    Измерительные преобразователи

    Измерительные преобразователи нашли свое применение в слуховых аппаратах. Эти электроакустические приспособления используются для приема, усиления и направления звука в ухо. Таким образом слуховые аппараты компенсируют потерю слуха и делают аудиосигналы более различимой для пользователя.

    Согласно статистике, 80% людей с частичной или полной потерей слуха не устанавливают слуховые аппараты. Причинами зачастую является нежелание признавать потерю слуха и социальные стереотипы, связанные с заблуждениями о ношении слуховых аппаратов. Следуя этим данным, многие производители вкладывают силы и деньги в миниатюризацию аппаратов, которая при этом не шла в ущерб производительности.

    Технологии МЭМС позволяют уменьшить форм-фактор, стоимость и энергопотребление по сравнению с традиционными решениями. Так, например, Analog Devices, объем которого составляет всего 7,3 мм3, включает в себя микрофон МЭМС, подходящий в качестве слухового аппарата.

    Микрогидродинамические системы

    Микрогидродинамика представляет собой область научного знания, в которой рассматривается поведение малых объемов и потоков жидкостей. Типичная микрогидродинамическая система состоит из: игл, каналов, клапанов, насосов, смесителей, фильтров, датчиков и резервуаров.

    Такие системы часто используются для проведения медицинских тестов у постели больного. Особую роль такие тесты и анализы играют в развивающихся странах, где доступ к больницам ограничен, а лечение обходится дорого. Диагностические микрогидродинамические системы используют телесные жидкости (слюну, кровь или образцы мочи) для предварительной подготовки образца для анализа, обнаружения искомого компонента в пробе вещества, а также для анализа данных и отображения результатов. Одной из самых широко известных и распространенных микрогидродинамических систем является тест на беременность.

    Кроме того, эти системы используются для доставки лекарственных средств в конкретный орган человека. Так, при помощи микроигл осуществляется чрескожная доставка лекарственных средств. Существуют еще имплантируемые системы доставки (инсулиновая помпа, стенты с лекарственными препаратами) и непосредственно средства доставки лекарства (микро- и наночастицы).

    Для больных сахарным диабетом в 2012 году была разработана специальная система доставки инсулина – JewelPUMP. Первая версия была установлена на одноразовый кожный пластырь и обеспечивала непрерывную подачу инсулина в организм человека. Вся система весила всего 25 граммов и вмещала до 5000 единиц инсулина, которого хватало на 7 дней без дополнительного пополнения или замены.

    Микромеханические иглы

    Современные технологии микрообработки позволяют изготавливать иглы размером менее 300 мкм, что является пределом традиционных методов обработки. Как правило, длина микроиглы МЭМС составляет менее 1мм. Их используют для доставки лекарственных средств, записи биомедицинских сигналов, взятия проб жидкостей, раковой терапии и микродиализа.

    Часто такие микроиглы интегрируются в какое-либо устройство и используются в сочетании с системами микроканалов. Твердые и полые микроиглы изготавливаются при помощи микрообработки из кремния, стекла, металлов и полимеров. Они бывают разных форм – от цилиндрических до восьмиугольных.


    Твердые микроиглы, изготавливаемые методом реактивного ионного травления кремния.

    Микрохирургические инструменты

    Малоинвазивная хирургическая процедура призвана обеспечить диагностику, мониторинг или лечение заболеваний путем проведения операций с очень маленькими разрезами или даже через естественные отверстия на теле человека. Преимущества такой хирургии перед традиционной открытой – меньше боли, минимальное повреждение тканей и количество рубцов, быстрое восстановление после операции, а зачастую и более низкая стоимость для пациента.

    К общим процедурам малоинвазивной хирургии относят ангиопластику, катетеризацию, эндоскопию, лапароскопию и нейрохирургию. Микрохирургические инструменты на основе МЭМС являются наиболее приемлемыми технологиями в малоинвазивной хирургии.

    Так для проведения процедуры ангиопластики, предназначенной для восстановления нормального кровотока через закупоренные артерии, используются сердечные стенты. Их вводят в кровеносный сосуд через катетер, чтобы расширить сосуд. Существует два основных типа стентов: металлические и полимерные стенты Полимерные, в свою очередь, подразделяются на рассасываемые и нерассасываемые. Очевидно, что первые являются более привлекательными, поскольку могут раствориться внутри тела после того, как выполнят свое предназначение.

    С момента первого серийного выпуска МЭМС прошло уже более 50 лет. За это время технология биомедицинских МЭМС прочно вошла в нашу жизнь: с ее помощью стало возможным помогать людям с ограниченными возможностями, лечить серьезные заболевания и проводить безопасные хирургические операции. Технология продолжает активно развиваться благодаря созданию и открытию новых материалов, что позволяет уменьшать размеры МЭМС и тем самым расширять сферу их применения.

    За последние несколько лет широкое распространение по всему миру получили датчики, основанные на микроэлектромеханических системах, так называемых МЭМС. Популярность данных устройств обусловлена рядом причин, основными из которых являются простота их использования, относительно низкая цена и малые габариты. МЭМС-датчики, как правило, оснащаются интегрированной электроникой обработки сигнала и не имеют движущихся частей. Этим обуславливается их высокая надежность и способность обеспечивать стабильные показания в достаточно жестких условиях окружающей среды (перепады температур, удары, влажность, вибрация, электромагнитные и высокочастотные помехи). Совокупность данных преимуществ побуждает производителей систем для различных сфер применения (от авиа - и автомобилестроения до бытовой техники) использовать в своих разработках те или иные МЭМС-сенсоры.

    В данной статье будут рассмотрены МЭМС-датчики для измерения ускорения (акселерометры) и угловой скорости (гироскопы). Данные устройства активно используются в системах управления летательными аппаратами, для обеспечения безопасности движения автомобилей, в сельскохозяйственной технике, изделиях специального назначения и др. В настоящее время существует достаточно много различных решений по исполнению МЭМС-устройств. В их числе - одноосевой МЭМС-гироскоп с вибрирующим кольцом и трехосевой емкостной МЭМС-акселерометр.

    Одноосевой МЭМС-датчик угловой скорости (гироскоп) с вибрирующим кремниевым кольцом

    Данный кремниевый цифровой гироскоп разработан с учетом требований к низкой стоимости изделия и экономичному энергопотреблению для систем навигации и наведения нового поколения. Он способен измерять угловую скорость до ± 1,0 є/с и имеет два режима вывода: аналоговый сигнал напряжения, линейно-пропорциональный угловой скорости, и цифровой по протоколу SPI®.

    Режима вывода - аналоговый или цифровой - выбирается пользователем при подключении датчика к какой-либо системной плате. Главной отличительной особенностью гироскопа является применение технологии сбалансированного вибрирующего кольца в качестве датчика угловой скорости. Именно она обеспечивает надежную работу и точное измерение скорости вращения даже в условиях сильной вибрации.

    Возможны две основные конфигурации гироскопа, одна из них позволяет датчику измерять угловую скорость по оси, перпендикулярной к плоскости системной платы, другая дает возможность определять угловую скорость по оси, параллельной плоскости материнской платы. Сочетание в одном устройстве гироскопов обеих конфигураций позволяет получить инерциальную систему, измеряющую угловую скорость по нескольким осям (любые сочетания тангажа, крена и рысканья летательного аппарата). Размеры датчиков обеих конфигураций и оси измерения угловой скорости приведены на рис.1.

    Как правило, подобные гироскопы выпускаются в герметичных керамических LCC корпусах которые можно устанавливать на системные платы. Датчик состоит из пяти основных компонентов:
    - кремниевый кольцевой МЭМС-сенсор (MEMS-ring),
    - основание из кремния (Pedestal),
    - интегральная микросхема гироскопа (ASIC),
    - корпус (Package Base),
    - крышка (Lid).

    Кремниевый кольцевой МЭМС-сенсор, микросхема и кремниевое основание размещены в герметичной части корпуса с вакуумом, частично заполненным азотом. Это дает серьезные преимущества перед сенсорами, которые поставляются в пластиковых корпусах, которые имеют определенные ограничения чувствительности в зависимости от уровня влажности.

    Кремниевый кольцевой МЭМС-сенсор

    Диаметр кремниевого МЭМС-кольца равен 3 мм., толщина - 65 мкм. Его изготавливают методом глубокого реактивного ионного травления объемных кремниевых структур на 5” пластинах. Кольцо поддерживается в свободном пространстве восемью парами симметричных спиц, которые исходят из твердого концентратора диаметром 1 мм. в центре кольца.

    Процесс объемного травления кремния и уникальная технология изготовления кольца позволяют получить хорошие геометрические свойства, необходимые для точного баланса и термической стабильности сенсорного кольца. В отличие от других гироскопов здесь нет мелких расхождений, создающих проблемы с интерференцией и трением. Указанные особенности существенно определяют стабильность датчика при колебаниях температуры, вибрации или ударе. Еще одним преимуществом подобной конструкции является ее «врожденный» иммунитет к ошибкам, которые датчики могут выдавать под влиянием ускорения, или «g - чувствительности».

    Пленочные приводы и преобразователи прикреплены к верхней поверхности кремниевого кольца по периметру и для получения электроэнергии подключены к связующим контактам в центре концентратора через треки на спицах. Это активирует или «заводит» периметр кольца в рабочий режим вибрации на уровне Cos2и с частотой 22 кГц, определяя радиальное перемещение, которое может осуществляться по причине первичного движения привода либо за счет действия кориолиосовой силы, когда гироскоп вращается относительно его оси чувствительности. Существует одна пара приводов первичного движения, одна пара первичных снимающих преобразователей и две пары вторичных снимающих преобразователей.

    Комбинация сенсорной технологии и восьми вторичных снимающих преобразователей улучшает в датчике соотношение «сигнал/шум», что позволяет получать малошумящие устройства с отличными свойствами по угловому случайному дрейфу гироскопа, которые являются ключевыми для применения в сферах инерциальной навигации (например, стабильность наведения камеры или антенны). Описанную схему можно сравнить с камертонной структурой, содержащей бесконечное количество камертонов, интегрированных в единую балансирующую вибрирующую кольцевую конструкцию. Это обеспечивает наиболее высокую стабильность измерения угловой скорости по времени, температуре, вибрациям и ударам для МЕМС-гироскопов данного класса.

    Концентратор в центре кольца сенсора установлен на цилиндрическом кремниевом основании диаметром 1 мм., которое связано с кольцом и ASIC с помощью эпоксидной смолы. Микросхема гироскопа имеет габариты 3х3 мм и изготовлена по технологии 0,35 мкм КМОП. ASIC и МЭМС-сенсор (кольцо) разделены физически, но соединены электрической цепью через золотые проводки. В связи с этим в подобной схеме отсутствуют внутренние каналы, что позволяет уменьшить шумовую нагрузку и получить отличные электромагнитные свойства.

    Керамический корпус датчика изготовлен по технологии LCC и представляет из себя многослойную оксидно-алюминиевую конструкцию с внутренними контактными площадками для разварки, соединенными через корпус с наружными контактными площадками посредством многослойных вольфрамовых межсоединений. Аналогичные интегральные межсоединения есть в крышке гироскопа, что обеспечивает размещение чувствительного элемента датчика внутри щита Фарадея и хорошие электромагнитные показатели гироскопа. При этом внутренние и наружные контактные площадки покрыты гальваническим путем слоем никеля и золота.

    Корпус включает в себя уплотнительное кольцо, на верхней части которого шовной сваркой приварена металлическая крышка. Сварка произведена электродом сопротивления, что создает полную герметичность конструкции. В отличие от большинства МЭМС-корпусов, доступных сегодня на рынке, при изготовлении корпуса данного устройства используется специально разработанная шовная сварка, при которой исключена возможность образования комочков (брызг) сварки внутри гироскопа. При использовании других технологий сварки сварочные брызги могут попадать на нижние конструкции и негативно влиять на надежность гироскопа за счет воздействия на вибрирующий МЭМС-элемент, особенно в тех местах, где конструкции имеют небольшие зазоры. В корпусе также есть встроенный датчик температуры для обеспечения внешней термокомпенсации.

    Принцип действия системы гироскопа

    Описываемые гироскопы обычно являются твердотельными устройствами и не имеют движущихся частей за исключением сенсорного кольца, которое имеет возможность отклоняться. Оно показывает величину и направление угловой скорости за счет использования эффекта «силы Кориолиса». Во время вращения гироскопа силы Кориолиса действуют на кремниевое кольцо, являясь причиной радиального движения по периметру кольца.

    По периметру кольца равномерно расположены восемь приводов/преобразователей. При этом есть одна пара приводов «первичного движения» и одна пара первичных снимающих преобразователей, расположенных относительно их главных осей (0° и 90°). Две пары вторичных переключающих преобразователей расположены относительно их вторичных осей (45° и 135°). Приводы первичного движения и первичные переключающие преобразователи действуют вместе в замкнутой системе, чтобы возбуждать и контролировать первичную рабочую амплитуду вибрации и частоты (22 кГц).

    Вторичные снимающие преобразователи распознают радиальное движение на вторичных осях, величина которого пропорциональна угловой скорости вращения, благодаря которой гироскоп обретает угловую скорость. Преобразователи производят двухполосный сжатый передающий сигнал, демодулирующийся обратно в полосы, ширина которых контролируется пользователем одним простым внешним конденсатором. Это дает пользователю возможность полностью контролировать производительность системы и делает преобразование абсолютно независимым от постоянного напряжения или низкочастотных параметрических условий электроники.

    На рисунках 3 и 4 продемонстрирована структура кремниевого кольца сенсора, показывающая приводы первичного движения «PD» (одна пара), первичные снимающие преобразователи «PPO» (одна пара) и вторичные снимающие преобразователи «SPO» (две пары).

    На рисунке 5 схематично показано кольцо, при этом спицы, приводы и преобразователи удалены для ясности. В данном случае гироскоп выключен, кольцо круглое.

    В момент, когда датчик находится в выключенном состоянии, в кольце возбуждается движение вдоль его основных осей за счет приводов первичного движения и первичных снимающих преобразователей, воздействуя в замкнутом контуре на систему контроля ASIC. Круглое кольцо принимает в режиме Cos2и эллиптическую форму и вибрирует с частотой 22 кГц. Это показано на Рис.6, на котором гироскоп уже включен, но еще не вращается. На четырех вторичных снимающих узлах расположенных на периметре кольца под углом 45 по отношению к основным осям нет радиального движения.

    Если гироскоп подвергается воздействию угловой скорости, то на кольцо действуют силы Кориолиса: по касательной к периметру кольца относительно главных осей. Эти силы деформируют кольцо, что вызывает радиальное движение вторичных снимающих преобразователей. Данное движение, определяемое на вторичных снимающих преобразователях, пропорционально прилагаемой угловой скорости. При этом двухполосный сжатый передающий сигнал демодулируется с учетом основного движения. В итоге получается низкочастотный компонент, который пропорционален угловой скорости.

    Рис. 7 Режимы работы сенсорного кольца при вращающемся гироскопе

    Схема управления всем гироскопом расположена в ASIC.

    Рис. 8 Блоковая диаграмма функционирования ASIC-сенсора
    Рис. 9 Внешний вид ASIC-гироскопа

    Подобные датчики обладают миниатюрными габаритами (6,5х1,2 мм) при сверхнизком потреблении энергии (12 мВт). Для них характерен широкий диапазон измерения (до 900 градусов/сек), сверхмалый вес 0,08 грамм и высокая стабильность работы.
    Гироскопы подобной конструкции можно с успехом применять для измерения скоростей вращения объекта по трем осям в транспортных и персональных навигаторах для определения и сохранения параметров движения и определения местоположения; в системах отслеживания по трассе на сельскохозяйственной технике для стабилизации антенн; в промышленной аппаратуре, робототехнике и других сферах. Использование данных датчиков угловой скорости на летательных аппаратах позволяет на порядок уменьшить габариты, вес, энергопотребление приборов и в результате значительно снизить цену навигационной системы в целом. Надежность и точность в управлении широкого спектра самолетов, вертолетов и других летательных аппаратов при этом увеличивается. Таким образом, данный вид гироскопов оптимально подходит для использования в ситуации, когда есть ограничения по габаритам, весу и стоимости изделия.

    Технические характеристики гироскопа

    Параметр Предельный диапазон значений Типовая величина
    Напряжение питания 2.7 3.6 В 3 В
    Диапазон измерения 75, 150, 300, 900 градусов/сек -
    Чувствительность (аналоговый выход) 13.3, 6.7, 3.3, 1.0 мВ/Градус/сек -
    Температурное смещение чувствительности +/- 3% +/- 1%
    «Ноль» Ѕ напряжения питания - ср. кв. отклонение (температурное отклонение) +/- 3 градуса/сек +/- 1,5 градус/сек
    Нестабильность ср. кв. погрешности - < 40 градус/час
    Ширина полосы
    (ослабление -3 дБ)
    > 75 Гц - задается пользователем при использовании внешнего конденсатора Аналоговый выход до 160 Гц
    Цифровой выход 150 Гц фикс.
    Плотность шума 0.025 градус/сек/корень(Гц) 0,01 градус/сек/корень(Гц)
    Случайный временной уход - 0.28 градусов/корень(час)
    Рабочая температура -40...+85 градусов Цельсия
    -40 … +100 (при ограниченной работоспособности)
    -
    Температура хранения -55 … +125 градусов Цельсия -
    Удары 3500 g в течение до 500 мкс
    500 g в течение 1 мс 1 полуволна при включенном
    100 g 6 мс при включенном
    -
    Вибрация 3,5 g в диапазоне 10 Гц - 5 кГц при включенном -
    Время включения 0.5 с < 0,3 с
    Вес В зависимости от модификации от 0,08 до 0, 12 г. -
    Потребляемый ток 6 мА 4 мА

    Емкостной трехосевой МЭМС-акселерометр с цифровым выходом

    Высокопроизводительный трехосевой емкостной акселерометр изготовлен по специальной технологии 3D-МЭМС.

    Рис. 10 Оси датчика, по которым проводится измерение ускорения

    В корпусе датчика находятся высокоточный чувствительный элемент для определения ускорений и сервисная электроника (ASIC) с гибким цифровым выходом SPI.

    Рис. 11 Высокопроизводительный 3-осевой емкостной акселерометр

    Схематичное расположение ASIC и блока сенсорного элемента в датчиках подобной конструкции показано на рисунке 12.

    Корпус акселерометра изготовлен из пластика, а крышка из металла. В нижней части корпуса по обеим сторонам расположены плоские свинцовые выводы для поверхностного монтажа на печатную плату.

    Рис. 13 Конструкция корпуса акселерометра

    Подобная конструкция корпуса гарантирует надежную работу сенсора на протяжении всего жизненного цикла. Для обеспечения стабильного выхода акселерометры подобного класса разрабатываются, производятся и тестируются в широком диапазоне температур, влажности и механического шума. У датчика есть возможность самодиагностики по нескольким сценариям. Он полностью совместим с одно- и двухосевыми акселерометрами данного типа, что дает возможность комбинировать датчики при построении различных сенсорных систем.

    Описание технологии «3D-МЭМС»

    Понятие «3D-МЭМС» представляет собой инновационное сочетание технологий для формирования кремния в трехмерные структуры, инкапсуляции и контактирования для легкого монтажа и сборки. В результате это обеспечивает высокую точность сенсора, маленький размер устройства и низкое потребление энергии. Таким образом, усовершенствованный сенсор может быть изготовлен в виде крошечного кусочка кремния, способного измерять ускорение в трех ортогональных направлениях.
    Применяя технологию «3D-МЭМС», можно производить оптимизированные структуры для точных датчиков угла наклона, например, для обеспечения механического затухания в акселерометрах с целью использования сенсоров в условиях сильной вибрации и высокоточных альтиметрах. Энергопотребление рассматриваемых акселерометров является крайне низким, что дает им значительное преимущество при использовании в устройствах с батарейным питанием. В то же время при производстве инклинометров, 3D-МЭМС-технология обеспечивает точность уровней лучше одной угловой минуты и отвечает самым высоким требованиям к качеству измерения.

    Преимущества технологии «3D-МЭМС»

    В качестве преимуществ технологии «3D-МЭМС» можно выделить следующие:
    - использование монокристаллического кремния для изготовления МЭМС (идеально упругий материал: нет пластической деформации, выдерживает до 70000g циклов ускорений);
    - емкостной принцип действия датчиков (обеспечивает прямое измерение отклонения в зависимости от большого числа вариантов величины зазора между двумя плоскими поверхностями; при этом емкость или заряд на паре пластин зависят от ширины зазора между ними и площади пластины);
    - высокий уровень точности и стабильности;
    - легкая диагностика при помощи ограниченного числа конденсаторов;
    - низкая потребляемая мощность;
    - высокая герметичность датчиков (позволяет снизить требования к упаковке; обеспечивает высокую надежность, так как частицы или химические вещества не могут попасть в элемент);
    - симметричные структуры элементов (улучшенная стабильность нуля акселерометра, линейность и чувствительность по оси; низкая зависимость показаний от температуры; нелинейность обычно ниже 1%; чувствительность по оси обычно не превышает 3%);
    - возможность производств датчиков по индивидуальному заказу (получение конкретных уровней чувствительности и частотных характеристик, необходимых заказчику; гибкие двухчиповые решения);
    - реальные 3D-структуры (большие защитная масса и емкость обеспечивают высокую производительность при работе в диапазоне измерений при малых g; хорошая стабильность по «0» и низкое влияние шума на показания датчика; образование 3D-сенсорных элементов).

    Принцип действия емкостного акселерометра

    В рассматриваемом типе трехосевых акселерометров принцип определения ускорения достаточно прост и надежен: инерционная масса дает людям возможность ощущать ускорение за счет перемещения в соответствии со вторым Законом Ньютона. Основные элементы акселерометра - тело, пружина и инерционная масса (ИМ). Когда скорость тела сенсора изменяется, ИМ через пружину так же побуждается последовать этим изменениям. Сила, воздействующая на ИМ, является причиной изменения ее движения, поэтому пружина изгибается, и расстояние между телом и ИМ изменяется пропорционально ускорению тела.
    Рабочие принципы сенсоров различаются в зависимости о того, по какому принципу определяется движение между телом и ИМ. В емкостном сенсоре тело и ИМ изолированы друг от друга и их емкость или емкостной заряд измеряются. Когда дистанция между ними уменьшается, емкость увеличивается и электрический ток идет по направлению к сенсору. В случае, когда расстояние увеличивается, наблюдается обратная ситуация: сенсор преобразует ускорение тела в электрический ток, заряд или напряжение.
    Превосходные характеристики рассматриваемых датчиков основаны на технологии емкостного измерения и хорошо подходят для определения малых изменений в движении. Чувствительный элемент для определения ускорения сделан из монокристального кремния и стекла. Это обеспечивает сенсору исключительную надежность, высокую точность и устойчивость показаний по отношению к воздействию времени и температуры.
    Как правило, чувствительный элемент датчика с диапазоном измерений ±1g выдерживает как минимум 50000g ускорений (1g = ускорение, вызванное силой тяжести Земли). Датчик измеряет ускорение, как в положительном, так и в отрицательном направлении, и чувствителен к статическому ускорению и вибрации. «Сердцем» акселерометра является симметричный чувствительный элемент (ЧЭ), изготовленный по технологиям объемной микромеханики, у которого есть два чувствительных конденсатора. Симметрия ЧЭ уменьшает зависимость от температуры и чувствительности по оси и улучшает линейность. Герметичность датчика обеспечивается за счет анодного соединения пластин друг с другом. Это облегчает корпусирование элементов, повышает надежность и позволяет использовать газовое затухание в сенсорном элементе.

    Концепция гетерогенной Chip-on-MEMS-интеграции МЭМС-элементов и интегральных микросхем

    В ходе производства трехосевого акселерометра применяют новую концепцию гетерогенной интеграции для объединения чувствительного элемента МЭМС и микросхемы (ASIC): «ЧИП-на-МЭМС» или CoM (chip-on-MEMS). Эта концепция основана на комбинации инкапсулированных на уровне пластины 3D-МЭМС-структур, технологии корпусирования на уровне пластины и технологии чипа на пластине. Все указанные процессы уже существуют на протяжении несколько лет. Их комбинация позволяет решать наиболее сложную проблему корпусирования: как экономически эффективно совместить МЭМС-элементы и интегральные микросхемы.
    Исходя из описанной концепции, технология включает в себя следующие шаги:
    - перераспределение и изоляция слоев на МЭМС пластине,
    - нанесение 300 микронных шариков припоя,
    - установка на МЭМС-пластину микросхем,
    - пассивация зазоров между микросхемами и МЭМС,
    - тестирование пластины с МЭМС-устройствами,
    - резка пластины,
    - финальное тестирование и калибровка сенсоров после резки.

    Рис. 14 Симметричный чувствительный элемент емкостного акселерометра
    Рис. 15 Схема установки на МЭМС-пластину интегральных микросхем

    Таким образом, благодаря е технологии CoM, можно получить полноценное функциональное МЭМС-устройство с размером корпуса по периметру 4х2 мм. и высотой 1 мм. Данная технология полностью готова для производства датчиков, как для небольших партий, так и в промышленных масштабах.

    Рис. 16 Некоторые этапы технологии производства акселерометров
    Рис. 17 Двухосевая инерциальная система на основе акселерометра

    Технические характеристики емкостного трехосевого акселерометра:

    Параметр Типовая величина
    Электропитание 3.3 В
    Диапазон измерений ±6 g
    Разрешение АЦП 12 бит
    AEC-Q полностью совместимы
    Встроенный температурный сенсор -
    Цифровой выход SPI -
    Максимальный удар 20 Kg
    Рабочая температура [-40;+125]С
    Полоса пропускания 45…50 Гц
    Улучшенная самодиагностика -
    Размер 7.7 х 8.6 х 3.3 мм
    Совместимость с 2 и 1-осевыми датчиками аналогичного типа

    Благодаря отличным характеристикам по стабильности и вибрационной надежности рассматриваемые акселерометры могут успешно применяться в следующих сферах:
    . электронный контроль стабильности движения контролируемого устройства,
    . система помощи при старте двигателя на подъеме,
    . электронный стояночный тормоз,
    . электронная защита от переворачивания,
    . регулировка подвески,
    . контроль углов наклона,
    . встроенные инерциальные системы,
    . применение в промышленности для различных устройств.

    Роль «Русской Ассоциации МЭМС» в развитии технологий производства сенсорных систем в России

    Из большого количества возможных вариантов было рассмотрено только два типа МЭМС-датчиков. В настоящий момент существует множество способов производства и применения микроэлектромеханических сенсоров, и многие компаний по всему миру серьезно занимаются разработкой дизайна и технологий изготовления различных сенсорных устройств, в том числе на основе МЭМС.
    «Русская Ассоциация МЭМС» (далее Ассоциация. прим.авт.) установила хорошие партнерские отношения с рядом ведущих российских и зарубежных разработчиков-производителей МЭМС-датчиков различного назначения. Среди них можно отметить некоторые немецкие предприятия, входящие в состав Ассоциации Silicon Saxony e.V., институт Fraunhofer, корпорации Honeywell International Inc. и Analog Devices Inc. (США), Московский государственный институт электронной техники (МИЭТ), a так же ряд компаний расположенных в разных странах мира. Благодаря контактам такого уровня у Ассоциации есть доступ к современным микросистемным технологиям, что дает ей возможность совместно с партнерами организовывать в России работу по следующим направлениям:
    1) выработка рекомендаций для заказчиков по применению тех или иных сенсоров мировых производителей при производстве российских систем;
    2) поставка различных датчиков (на базе МЭМС и других принципах) для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей (компас);
    3) доработка различных сенсорных компонентов известных мировых производителей под требования заказчика (изменение в ту или иную сторону диапазона измерений, функциональных характеристик и т.д.) с дальнейшим производством доработанных датчиков на «родном» заводе-изготовителе;
    4) организация проведения программы испытаний сенсорной ЭКБ в одном из российских или зарубежных Сертификационных центров с выдачей Сертификата установленного образца;
    5) организация разработки и изготовления под индивидуальные требования заказчика сенсорных систем, включающих различные датчики (на базе МЭМС и других принципах), для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей и др. (как сами системы, так и датчики, могут быть доработаны и сертифицированы в России, если заказчику необходимо, что бы изделия имели российское происхождение.
    6) Предложение отечественным разработчикам и производителям технологий производства современных МЭМС сенсоров (акселерометров, гироскопов, инклинометров, датчиков давления, вибрации и др.) для внедрения на российском производстве и изготовления полностью российского сенсорного продукта;
    7) Обучение специалистов российских предприятий по вопросам проектирования, разработки и производства МЭМС-сенсоров. К учебному процессу привлекаются ведущие российские и зарубежные специалисты в этой сфере.
    В качестве положительного примера научно-коммерческой кооперации Ассоциации и одного их российских предприятий можно привести двухосевую инерциальную измерительную систему, созданную на базе МЭМС-акселерометра. В настоящий момент разработан и изготовлен действующий прототип сенсорной системы начального уровня. Изготовленный прототип системы в качестве чувствительного элемента содержит в себе микроструктуры с воздушным зазором, обладает высокими чувствительностью и соотношением «сигнал/шум», низкой чувствительностью к помехам, хорошей температурной стабильностью.
    Подобную инерциальную систему в совокупности с другими компонентами и датчиками уже можно применять в автомобильной промышленности (срабатывание подушек безопасности и др.), для диагностики рельсового пути (контроль угла наклона), в системах навигации (измерение рысканья, крена и тангажа летального аппарата), контроль угла наклона трубопроводов и в других сферах. Изготовленное изделие обладает базовой конфигурацией с начальными характеристиками и может быть доработано в соответствии с требованиями Заказчика (диапазон измерений, уровень чувствительности и т.д.), а также проведено через программу испытаний в России с выдачей государственного сертификата установленного образца и представлено в виде готового изделия, но уже российского происхождения. Таким образом, у российского партнера появляется возможность существенно расширить свою рыночную долю за счет предложения потребителям систем и устройств, состоящих из современных сенсоров (МЭМС-акселерометры, гироскопы и др.), имеющих российское происхождение.

    Источник - http://www.sovtest.ru

    Алексей Борзенко

    Многие из существующих инноваций не используют в полной мере свой потенциал вплоть до появления на рынке принципиально новых разработок. Так, одной из ключевых технологий вплоть до 2012 г. аналитическая компания Gartner называет технологию микроэлектромеханических систем - MEMS (Micro-Electro Mechanical Systems). Согласно последним прогнозам In-Stat/MDR, рынок MEMS растет на 13,2% каждый год. Кстати, эту отрасль ИТ-индустрии в Японии называют микромашинами (Micromachines), а в Европе - микросистемными технологиями (Micro System Technology). По мнению аналитиков из Gartner, микроэлектромеханические системы позволят с минимальными затратами повысить чувствительность и механическую отдачу устройств на уровне кристаллов.

    Можно сказать, что MEMS - это множество микроустройств самой разнообразной конструкции и назначения, в производстве которых используются модифицированные технологические приемы микроэлектроники. Действительно, микроэлектромеханические системы получаются путем комбинирования механических элементов, датчиков и электроники на общем кремниевом основании посредством технологий микропроизводства. Все элементы могут быть реализованы в виде единого изделия, причем сразу десятками или сотнями, как микросхемы на кремниевой пластине. В основе этого лежит апробированная традиционная технология производства полупроводниковых интегральных микросхем. MEMS уже используются в нишевых приложениях, таких, как пассивные фильтры высокой частоты в терминалах беспроводной и сотовой связи, системы подвижных зеркал для мультимедийных проекторов, микрофоны. Число этих ниш и их размер растет сообразно рыночным потребностям.

    В истории развития MEMS-технологии, по мнению ведущих современных специалистов, можно выделить четыре уже пройденных этапа. На первом непродолжительном этапе - исследовательском (с середины 50-х до начала 60-х годов прошлого столетия) основные усилия к формированию облика будущей технологии приложили как научные подразделения крупных компаний (в первую очередь знаменитая Bell Laboratories), так и собственно промышленные компании и академическая наука. Специфика этого периода заключается в том, что главное внимание уделялось востребованным во времена холодной войны технологиям двойного назначения, прежде всего созданию точных и дешевых датчиков различных типов (проектирование перспективных реактивных боевых самолетов, например, требовало значительного числа экспериментов), пригодных к массовому производству. Неудивительно, что второй этап развития технологии связывают исключительно с мощными промышленными (точнее, с военно-промышленными) компаниями: такие гранды, как Fairchild, Westinghouse, Honeywell, спешили коммерциализовать первые экспериментальные наработки. На коммерциализацию ушло довольно много времени, и только к началу 70-х годов академическая наука стала получать целевое финансирование от промышленности для решения задач сокращения стоимости и расширения областей применения MEMS-устройств. Еще через десять лет этот этап также был преодолен - и наступила пора микромашинного производства. Можно считать, что с конца девяностых годов прошлого века началась микромеханическая эпоха.

    Многие эксперты, включая специалистов одной из ведущих фирм в этой области - Integrated Sensing Systems (http://www.mems-issys.com), - полагают, что MEMS-технология привносит буквально революционные изменения в каждую область применения путем совмещения микроэлектроники на основе кремния с микромеханической технологией, что позволяет реализовать систему на одном кристалле SoC (Systems-on-a-Chip). Так, технология MEMS дала новый импульс развитию систем инерциальной навигации и интегрированных систем, открыв путь к разработке "умных" изделий, увеличив вычислительные способности микродатчиков и расширив возможности дизайна таких систем.

    Сегодня MEMS-устройства применяются практически повсюду. Это могут быть миниатюрные детали (гидравлические и пневмоклапаны, струйные сопла принтера, пружины для подвески головки винчестера), микроинструменты (скальпели и пинцеты для работы с объектами микронных размеров), микромашины (моторы, насосы, турбины величиной с горошину), микророботы, микродатчики и исполнительные устройства, аналитические микролаборатории (на одном кристалле) и т. д.

    Базовые понятия

    Вообще говоря, микросистема предполагает интеграцию ряда различных технологий (MEMS, КМОП, оптической, гидравлической и т. д.) в одном модуле. Например, технологии изготовления MEMS-устройств для СВЧ-применений (катушки индуктивности, варакторы, коммутаторы, резонаторы) подразумевают традиционные технологические циклы изготовления интегральных схем, адаптированные для создания трехмерных механических структур (это, например, объемная микрообработка, поверхностная микрообработка и так называемая технология LIGA).

    Кремниевая объемная микрообработка включает технологию глубинного объемного травления. При таком процессе объемная структура получается внутри подложки благодаря ее анизотропным свойствам, т. е. различной скорости травления кристалла в зависимости от направления кристаллографических осей. Объемную структуру можно получить и методом наращивания, когда несколько подложек сплавляются и образуют вертикальные связи на атомарном уровне.

    При поверхностной микромеханической обработке трехмерная структура образуется за счет последовательного наложения основных тонких пленок и удаления вспомогательных слоев в соответствии с требуемой топологией. Преимущество данной технологии - возможность многократного удаления (растворения) вспомогательных слоев без повреждения взаимосвязей базовых слоев. А главная ее особенность состоит в том, что она совместима с полупроводниковой технологией, поскольку для микрообработки используется обычная КМОП-технология.

    Название технологии LIGA происходит от немецкой аббревиатуры Roentgen Lithography Galvanik Abformung, что означает комбинацию рентгеновской литографии, гальванотехники и прессовки (формовки). Здесь толстый фоторезистивный слой подвергается воздействию рентгеновских лучей (засветке) с последующим гальваническим осаждением высокопрофильных трехмерных структур. Сущность процесса заключается в использовании рентгеновского излучения от синхротрона для получения глубоких, с отвесными стенками топологических картин в полимерном материале. Излучение синхротрона имеет сверхмалый угол расходимости пучка. Источником излучения служат высокоэнергетические электроны (с энергией более 1 ГэВ), движущиеся с релятивистскими скоростями. Глубина проникновения излучения достигает нескольких миллиметров. Это обуславливает высокую эффективность экспонирования при малых временных затратах. Считается, что данная технология обеспечивает наилучшее отношение воспроизводимой ширины канала к его длине (при минимальных размерах).

    Важнейшая составная часть большинства MEMS - микроактюатор (рис. 1). Обычно данное устройство преобразует энергию в управляемое движение. Размеры микроактюаторов могут довольно сильно варьироваться. Диапазон применения этих устройств чрезвычайно широк и при этом постоянно растет. Так, микроактюаторы используются в робототехнике, в управляющих устройствах, в космической области, в биомедицине, дозиметрии, в измерительных приборах, в технологии развлечения, в автомобилестроении и в домашнем хозяйстве. Например, микроактюаторы нужны для управления резонансными датчиками (они генерируют и передают им резонансную частоту), для управления режущими инструментами в микрохирургии. Это могут быть также различные микродвигатели, которые используются для управления микрореле, микрозеркалами и микрозажимами. Микроактюатором может быть даже микроэлектродное устройство для возбуждения мускульных тканей в неврологических протезах.

    Рис. 1. Микроактюатор в MEMS.

    Все методы активации (движение, деформация, приведение в действие) в таких устройствах кратко можно свести к следующим: электростатический, магнитный, пьезоэлектрический, гидравлический и тепловой. При оценке использования того или иного метода часто применяют законы пропорционального уменьшения размеров. Наиболее перспективными методами считаются пьезоэлектрический и гидравлический, хотя и другие имеют большое значение. Электростатическая активация применяется примерно в одной трети микроактюаторов, и это, вероятно, наиболее общий и хорошо разработанный метод; главные его недостатки - износ и слипание. Магнитные микроактюаторы обычно требуют относительно большого электрического тока, также на микроскопическом уровне. При использовании электростатических методов активации получаемый выходной сигнал на относительную единицу размерности лучше, чем при использовании магнитных методов. Иными словами, при одном и том же размере электростатическое устройство выдает несколько лучший выходной сигнал. Тепловые микроактюаторы тоже потребляют относительно много электрической энергии; главный их недостаток состоит в том, что генерируемое тепло приходится рассеивать.

    Для оценки микроактюаторов используют такие критерии качества, как линейность, точность, погрешность, повторяемость, разрешение, гистерезис, пороговое значение, люфт, шум, сдвиг, несущая способность, амплитуда, чувствительность, скорость, переходная характеристика, масштабируемость, выход по энергии.

    Датчики и микроактюаторы

    Фактически понадобилось более 30 лет на то, чтобы появилось первое коммерческое приложение MEMS. Одной из первых MEMS-технологий, получивших повсеместное распространение, стали датчики ускорения (акселерометры), устанавливаемые сейчас практически во все современные автомобили для детектирования столкновения и выпуска защитных воздушных подушек (SRS). Известная корпорация Analog Devices (http://www.analog.com), изготовившая первые такие сенсоры в 1993 г., сейчас продает автомобилестроителям десятки миллионов так называемых iMEMS-акселерометров в год.

    Один из типичных современных MEMS-акселерометров состоит из взаимно блокирующих штырей, которые поочередно перемещаются и фиксируются. Изменение ускорения отражается на емкости структуры, которую легко измерить. Элементы могут размещаться подобно гребням в случае линейных акселерометров или в виде ступицы колеса в случае вращающегося акселерометра. Вращающиеся акселерометры могут служить для расширения возможностей антиблокировочных систем автомобиля (ABS), так как они способны зафиксировать фактическое перемещение автомобиля, а не только блокировку колес.

    Акселерометры воздушных мешков рассматриваются как один из лучших примеров MEMS-датчиков, предоставляющих изготовителям автомобилей одновременно выигрыш в стоимости и характеристиках. Подходит время, когда то же самое можно будет сказать относительно приборов контроля давления в шинах, которые в настоящее время интегрируются в серийно выпускаемые модели в ответ на закон по обеспечению безопасности. Однако существует еще одна область, где MEMS могут способствовать внедрению электроники в автомобиль - это защита от боковых ударов при аварии. Эксперты полагают, что это может внести большой вклад в продажи MEMS, если правительство США примет более жесткие стандарты для защиты от бокового удара при аварии. Специалисты Агентства обеспечения безопасности движения NHTSA считают, что подобные меры позволят спасти до тысячи жизней в год.

    В накопителях на жестких дисках вращающиеся акселерометры могут использоваться для обнаружения ротационных перемещений, влияющих на позиционирование головки и способных привести к потере дорожки. Компенсация ротационных перемещений используется обычно в дорогих моделях дисководов, поскольку при затратах чуть большего времени на чтение и запись значительно меньше его требуется на восстановление позиционирования головки после удара.

    Сотрудники Sandia National Laboratories разработали образец датчика, который может обнаруживать перемещение в менее чем 1 нм (рис. 2). Основная часть прибора представляет собой решетку, изготовленную из двух перекрывающихся гребенок (поперечный размер 50 мкм): одна неподвижная, другая прикреплена к пружине. Расстояние между зубцами гребенки составляет от 600 до 900 нм, что сопоставимо с длиной волны видимого света. Даже при незначительном перемещении прибора подвижная гребенка совершает колебания, расширяя или сужая решетку, образованную пересекающимися зубцами. Изменение зазоров решетки влияет на ее оптические свойства, и лазерный луч, отражаясь от перекрывающихся зубцов, будет заметно ярким или тусклым. Считается возможным использовать такой детектор как основу навигационного прибора, который сможет работать независимо от спутниковой сети глобальной системы позиционирования.


    Рис. 2. Датчик MEMS.

    Традиционно системы позиционирования на базе движения страдают от накопления мелких ошибок. С течением времени эти ошибки могут привести к показаниям, отклоняющимся на мили от действительного положения. Позиционное фиксирование, характерное для прибора Sandia, обеспечивает гораздо более медленную деградацию характеристик. Кроме того, прибор может работать под водой и в туннеле, куда GPS-сигнал не проходит. В настоящее время ведется работа над созданием портативной версии прибора для того, чтобы его можно было передать другим исследователям для проведения экспериментов. Прибор на базе указанной конструкции может поступить на рынок через три-пять лет.

    Самый маленький датчик

    В прошлом году Национальный институт стандартов и технологии США объявил о создании миниатюрного магнитного датчика, который может обнаруживать изменения магнитного поля порядка 50 пТ (это в миллионы раз слабее магнитного поля Земли). Прибор размером с рисовое зерно примерно в 100 раз меньше, чем современные датчики с аналогичной чувствительностью. Новый магнитный датчик можно изготовить и собрать с использованием существующих технологий микроэлектроники и MEMS. Новый магнетометр способен обнаруживать запрятанное оружие на расстоянии 12 м или стальную трубу диаметром 150 мм под землей на глубине 35 м. Датчик работает на принципе обнаружения незначительных изменений уровней энергии электронов в условиях магнитного поля. Миниатюрный рубидиевый элемент нагревается в герметичной прозрачной ячейке до образования пара рубидия. Луч полупроводникового лазера пропускается через атомный пар. При наличии магнитного поля некоторое количество лазерного излучения абсорбируется атомами, и это обнаруживается фотоэлементом. Большие магнитные поля вызывают пропорционально большие изменения уровней атомной энергии и изменяют поглощение атома.

    Микроактюаторы, работа которых основана на обратном эффекте (прикладываемое напряжение вызывает небольшие перемещения кремниевых структур), сегодня используются, например, для точной подстройки магнитных головок. Последние обычно отвечают за обнаружение сигналов в накопителях на магнитных дисках. При этом существенно повышается плотность информации "дорожка на дюйм", или tpi (track per inch), а следовательно, и емкость самого накопителя.

    Есть и еще целый ряд успешных MEMS-изделий, таких, как головки микроструйных принтеров, гироскопы, датчики давления, которые сотнями миллионов поставляются медицинской и автомобильной промышленности. Назовем еще цифровые проекторы высокого разрешения, построенные на основе MEMS-массивов микрозеркал. За последние годы удалось достичь заметных успехов в изготовлении моторов, насосов и зажимов, сенсоров давления и смещения - множества самых разных по назначению механических агрегатов, настолько малых, что их не видно невооруженным глазом. Но обо всем по порядку.

    Нанодатчики в космосе

    В совместном проекте NASA и корпорации Aerospace планируется создать "черный ящик", в котором будут использованы нанодатчики массой несколько граммов. Подобные устройства будут служить для сбора данных о входе космических объектов в земную атмосферу из космоса. После прохождения опасного скоростного участка и входа в плотные слои атмосферы черный ящик будет "звонить домой" и передавать данные с использованием спутника до посадки на землю или водную поверхность.

    Для сравнения: "черный ящик" промышленной авиации аналогичного назначения (REBR) весит около 2,2 фунта. NASA намечает опытные испытания REBR осенью 2006 г. на борту невозвращаемой ракеты Delta II. Если испытания пройдут успешно, планируется использовать нанотехнику в экспедициях на Луну и Марс. Нанодатчики могут быть упакованы в маленькие сферы, которые будут использоваться на космическом корабле Crew Exploration Vehicle (CEV), разрабатываемом для замены "челнока". Как объявил президент Буш, демонстрационный полет CEV состоится в 2008 г., а пилотируемый полет - в 2014 г.

    Нанотехника способна послужить для выполнения контрольных функций на борту. Зонды могут использоваться как разведывательные устройства, которые выбирают места посадки для космического корабля, или для ориентирования корабля на незнакомой территории. Радиосигналы с нанозондов позволят экипажу знать, где он находится.

    Нанотехника может также сыграть роль в полетах, использующих "аэрозахват", или при входе в незнакомую атмосферу. В технике аэрозахвата планетарная атмосфера используется для изменения скорости корабля. Космический корабль делает глубокий "прыжок" в атмосферу для установления орбиты без использования топлива. Этот метод позволит уменьшить типовую массу межпланетного космического корабля наполовину, позволяя задействовать меньшие, менее дорогие транспортные средства.

    Разведывательный зонд может двигаться впереди космического корабля и предоставлять данные о давлении и плотности атмосферы, определяя полетный коридор с устойчивым положением корабля и уменьшением степени риска при выполнении миссии аэрозахвата.

    DMD для DLP

    Лежащая в основе любого проектора DLP (Digital Light Processing) технология цифровой обработки света базируется на разработках корпорации Texas Instruments (http://www.ti.com), создавшей новый тип формирователя изображения на основе MEMS. Еще в 1987 г. изобретенное Ларри Хорнбеком (Larry J. Hornbeck) цифровое мультизеркальное устройство DMD (Digital Micromirror Device) завершило десятилетние исследования Texas Instruments в области микромеханических деформируемых зеркальных устройств. Суть открытия состояла в отказе от гибких зеркал в пользу матрицы жестких зеркал, имеющих всего два устойчивых положения. DMD-кристалл - это матрица высокой точности, осуществляющая цифровое преобразование света (рис. 3).

    Рис. 3. Современная разработка DMD-матрицы.

    DMD-кристалл по сути представляет собой полупроводниковую микросхему статической оперативной памяти (SRAM), каждая ячейка которой (точнее, ее содержимое) определяет положение одного из множества (от нескольких сотен тысяч до миллиона и более) размещенных на поверхности подложки микрозеркал размером 16х16 мкм. Как и управляющая ячейка памяти, микрозеркало имеет два состояния, отличающихся направлением поворота зеркальной плоскости вокруг оси, проходящей по диагонали зеркала.

    С помощью массива микроскопических зеркал формируется луч, причем каждое такое зеркало соответствует одному пикселу света в проецируемом изображении. В сочетании с цифровым сигналом, источником света и проекционным объективом эти зеркала обеспечивают самое высокое качество воспроизведения видео и графических изображений.

    Электромеханическая память

    Сегодня и припомнить-то трудно, сколько было разных идей по поводу того, что использовать для запоминающих устройств. А компания Cavendish Kinetics (http://www.cavendish-kinetics.com) предложила еще один подход к созданию энергонезависимых запоминающих устройств. В основе ее подхода лежат микроэлектронные механические системы с возможностью интеграции в КМОП-процессы. Память Cavendish Kinetics может выпускаться в двух вариантах, с возможностью однократной записи и со способностью перезаписи.

    Как полагает компания, ее технология, названная Nanomech, обладает самым низким энергопотреблением среди встраиваемых типов памяти, а по скорости работы сравнима с флэш-памятью. Название Nanomech иллюстрирует ее принцип действия (рис. 4). Запоминающая ячейка представляет собой проводящую (металлическую) пластину - кантиливер (микроэлектромеханический актюатор), закрепленный над контактом. Если между контактным электродом и пластиной создать разность потенциалов, пластина изогнется и коснется контакта, в результате чего электрическое сопротивление упадет практически до нуля. Что любопытно, этот эффект обладает гистерезисом, так как после касания пластинки контакта происходит "залипание" - для разрыва контакта необходима дополнительная энергия. Таким образом, возможно создать память типа ПЗУ, в которую что-либо записать можно лишь однажды. Для перезаписи над пластинкой достаточно поставить дополнительный электрод, приложив к которому потенциал можно разомкнуть контакт.

    Действующие прототипы были созданы по КМОП-технологии с учетом проектных норм 0,35 мкм, однако компания уверяет, что такие ячейки памяти можно создавать при соблюдении проектных норм 45 нм. К преимуществам нового типа памяти следует отнести и то, что ток в режиме ожидания отсутствует, а для записи требуется затратить механическую энергию величиной всего 25 пкДж. Устройство остается работоспособным даже при температуре 200 град., при этом количество циклов записи-перезаписи может достигать 20 млн.

    На CeBIT"2005 IBM продемонстрировала накопитель, обеспечивающий плотность записи данных свыше 19,2 Гбайт на 1 см2. Специалисты утверждают, что этот прототип микроэлектромеханической системы MEMS способен записать на площади размером с почтовую марку информацию, примерно эквивалентную емкости 25 DVD-дисков. Сотрудники IBM ласково назвали свое устройство Millipede ("многоножка"), потому что у него тысячи очень мелких кремниевых шипов, которые могут "прошивать" рисунок из отдельных битов в тонкой полимерной пленке (рис. 5).


    Рис. 5. MEMS-память Millipede.

    Вообще говоря, технологию "многоножек" предложил несколько лет назад нобелевский лауреат Герд Бинниг, автор сканирующего туннельного микроскопа и сотрудник исследовательского института IBM. Он обратил внимание на способность микроскопа формировать в полимерах ямки наноразмера, наличие которых в определенных точках вещества можно трактовать как единичное значение бита. Бинниг, стараясь приспособить свое открытие к нуждам промышленности, научился одновременно сканировать множество подобных ямок. Таким образом, принцип работы Millipede напоминает всем хорошо известные перфокарты. Ключевым элементом новой технологии служит массив V-образных кремниевых кронштейнов (cantilever), на конце каждого из которых находится миниатюрная микронная игла. Данные записываются на носители, представляющие собой очень тонкий слой полимерного материала на кремниевой подложке. Наконечник каждого V-образного кронштейна с размещенной на нем иглой одновременно служит зоной повышенного сопротивления. При пропускании через него импульса электрического тока игла разогревается до температуры, превышающей температуру плавления полимера, и "выплавляет" в носителе воронку диаметром около 10 нм. Когда ток прерывается, игла остывает, а полимер затвердевает. Для считывания данных замеряют сопротивление "рабочей части" кронштейна. В этом случае игла также разогревается, но только до меньшей температуры, при которой полимер, используемый в носителе, еще не размягчается. Поверхность носителя сканируется, и при попадании иглы в воронку интенсивность теплоотвода от нее резко увеличивается, температура уменьшается, в результате сопротивление изменяется скачкообразно, за счет чего и фиксируется бит информации.

    Возможность многократной записи обеспечивается особенностями вязкоупругих свойств полимерных систем. Дело в том, что в области воронки-бита полимер находится в так называемом метастабильном состоянии, из которого его можно вывести неким внешним воздействием, например, с помощью все того же разогрева до определенной температуры. Выполняется это путем прохода нагретой иглы над воронкой, после чего последняя исчезает, т. е. данные стираются. По заявлению специалистов IBM, на сегодняшний день им удалось достичь долговечности носителя, превышающей 100 тыс. циклов перезаписи.

    Управление массивом игольчатых кронштейнов в Millipede осуществляется с помощью электронных цепей с временным мультиплексированием - подобно тому, как это делается в микросхемах DRAM. Перемещение носителя вдоль массива и его точное позиционирование обеспечиваются электромагнитным приводом. IBM утверждает, что Millipede подходит для мобильных устройств: цифровых камер, мобильных телефонов и USB-карт. Однако пока речь идет только о лабораторном образце, а до выхода на рынок Millipede дозреет года через два, не раньше.

    Как отмечает аналитическая компания NanoMarkets в своем отчете по рынку памяти, сегмент энергонезависимой памяти к 2011 г. будет оцениваться в 65,7 млрд долл. При этом в понятие "энергонезависимой памяти" компания включила MRAM, FRAM, голографическую память, а также MEMS-разработки, выполненные с использованием новых технологий. По оценкам специалистов, рыночные доли типов энергонезависимой памяти, именуемых в обзоре Nanostorage (устройства хранения, выполненные с использованием микротехнологий), могут составить 40% как в секторе обычной памяти, так и в секторе дисковых устройств.

    "Электромеханика" в телекоммуникациях

    Одной из самых перспективных областей внедрения MEMS многие эксперты в настоящее время считают рынок телекоммуникаций. Еще в конце 2000 г. от Национальной лаборатории Sandia (http://www.sandia.gov), принадлежащей министерству энергетики США, отпочковалась частная компания MEMX (http://www.memx.com), занимающаяся вопросами коммерческого применения создаваемых в лаборатории MEMS-технологий. Компания сфокусировалась в своей деятельности на оптических коммутаторах для оптоволоконных телекоммуникационных систем. В их основу положена фирменная технология Sandia под названием SUMMiT V (от Sandia Ultraplanar Multilevel MEMS Technology). Это микромашинный процесс обработки поверхности кристалла напылением и травлением, охватывающий пять независимых слоев поликристаллического кремния - четыре "механических" слоя для построения механизмов и один электрический для обеспечения межсоединений всей системы. Технология позволяет доводить размеры механических элементов до 1 мкм.

    Что же касается одного из электронных гигантов - корпорации Intel (http://www.intel.com), то решение о развитии технологий MEMS было принято ею еще в 1999 г. На весеннем Форуме Intel для разработчиков в 2002 г. было не только официально заявлено об интересе к микроэлектромеханическим устройствам, но и провозглашена стратегическая важность этого направления. Учитывая потенциал корпорации как в сфере разработок, так и в производстве, значение этого заявления для рынка MEMS переоценить было трудно. Примерно в это же время на заводе Intel Fab 8 была внедрена микроэлектромеханическая технология, позволяющая формировать внутри или на поверхности полупроводниковых кристаллов крошечные механические устройства - датчики, клапаны, шестерни, зеркала, исполнительные элементы. Для Intel MEMS это скорее микроэлектронные механические системы - микроскопические механические компоненты для устройств, которые отличаются пониженным энергопотреблением и сверхкомпактными конструктивными характеристиками и выполняют вычислительные и коммуникационные функции. Корпорация ведет исследования возможных применений этих технологий в антеннах, экранах, настраиваемых фильтрах, конденсаторах, индукторах и микрокоммутаторах.

    Весной 2004 г. Intel начала предлагать своим партнерам для интеграции в сотовые телефоны радиочастотные front-end-модули, построенные по технологии MEMS. В подобный модуль интегрировано около 40 пассивных элементов, что позволяет сэкономить до двух третей пространства в сотовом телефоне. Количество и состав модулей зависят от нужд заказчиков, которым предлагается использовать такие MEMS-модули для миниатюризации пассивных фильтров, резистивных и емкостных цепей. В будущем в аналогичные модули планируется интегрировать низкоскоростные коммутаторы, а в перспективе, возможно, высокочастотные коммутаторы передачи/приема и фильтры на поверхностных акустических волнах SAW (Surface Acoustic Wave). Существующие дискретные SAW-фильтры хотя и довольно громоздки в сравнении с интегральными микросхемами, однако показатель качества фильтрации у них выше примерно на два порядка. К тому же, если размер SAW-фильтров измеряется в сантиметрах, то MEMS-резонаторов на 1 см2 площади можно разместить несколько десятков тысяч штук. Нынешнее поколение MEMS-модулей производится на фабрике Intel Fab 8 в Израиле на 200-мм пластинах с учетом проектных норм 0,25 и 0,35 мкм.

    На последней конференции по интегральным схемам ISSCC"2005 были отмечены большие возможности рынка ВЧ-фильтров преселектора. Ученые из Мичиганского университета отметили, что такие фильтры найдут применение в телефонах для выбора нужного ВЧ-канала и устройствах ВЧ будущих поколений, где MEMS предоставляют решение с фактором качества Q выше 10 000, что значительно лучше показателя обычных керамических фильтров. Их коллеги из Texas Instruments, в свою очередь, сообщили о том, что MEMS ВЧ-фильтры можно использовать в малошумящих усилителях. Проблемой остается то, что MEMS-приборы дороги и их внедрение на промышленный рынок пока довольно затруднительно. Представитель фирмы XCom Wireless, выпускающей подсистемы на базе MEMS-реле и варакторов, считает перспективным их использование в программируемых радиоустройствах, а также в радиолокационных станциях с фазированными антенными решетками на спутниках.

    Перспективы MEMS-дисплеев

    По сообщению агентства DigiTimes, тайваньский производитель небольших панелей компания Prime View International (PVI) установила долгосрочные стратегические отношения с американской компанией Qualcomm MEMS Technologies (QMT, http://www.qualcomm.com). Основная область сотрудничества - разработка коммерческих решений на базе iMod-дисплеев, которые планирует выпускать QMT.

    Вообще говоря, технология iMod Display основана на микроэлектронных механических системах MEMS и предпочтительна пока для мобильных устройств. Экран хорошо отображает информацию даже под прямым воздействием яркого солнечного света. Как заявляют представители Qualcomm, сегодня решены и многие проблемы, касающиеся энергопотребления. На ближайшие два года, в соответствии с подписанным контрактом, PVI заявлена как основной производитель подобных дисплеев. Руководители компаний оптимистично высказываются о развитии продвигаемой технологии. Ведь, помимо улучшения вышеназванных технических характеристик, решены и некоторые проблемы производственного процесса. Технология такова, что нет никакой необходимости в добавлении в панель ламп подсветки и цветовых фильтров. Интересно, что эти экраны будут даже тоньше TFT ЖК-панелей.

    Стоит отметить, что используемое ныне ноу-хау QMT приобрела вместе с компанией Iridigm в сентябре 2004 г. Вообще говоря, идея данной технологии заключается в том, чтобы формировать цветные изображения методом интерференции световых волн - точно так же, как это происходит, к примеру, в крыльях бабочки или перьях павлина. Из сказанного выше сразу вытекает первое достоинство разработки Iridigm, состоящее в том, что она изначально не предполагала использования красителей. Именно поэтому дисплеи на ее основе со временем не должны утратить яркость и цветовую насыщенность. Ключевым элементом технологии, получившей в то время название iMoD Matrix, выступает интерференционный модулятор iMoD (Interference Modulator). Он представляет собой образец микроэлектромеханической MEMS-системы и состоит из полупрозрачной пленки на стеклянной подложке, способной частично отражать, а частично пропускать свет, и гибкой металлической мембраны. Последняя может находиться в двух состояниях: в первом случае между ней и пленкой есть воздушный зазор, во втором - нет. Переход из одного состояния в другое осуществляется за счет электростатического взаимодействия в результате приложения внешнего напряжения различной полярности, причем после его снятия мембрана сохраняет новую конфигурацию.

    Когда пленка и мембрана разделены воздушным зазором, световые волны, отразившиеся от пленки, интерферируют с волнами, прошедшими сквозь нее и затем отразившимися от мембраны, в результате чего выделяется излучение определенного цвета. Если же зазор отсутствует, то никакой интерференции не происходит. Варьируя величину зазора, можно получить три основных цвета: при наибольшей толщине воздушной прослойки - красный, при средней - зеленый и при наименьшей - синий. Размеры одного интерференционного модулятора составляют всего десятки микрон. Один пиксел в дисплее на основе iMoD Matrix состоит из трех субпикселов - красного, зеленого и синего, каждый из которых образован несколькими рядами модуляторов. При этом управляющие схемы располагаются по краям дисплея.

    В числе достоинств предлагаемого решения, помимо хорошего качества изображения, специалисты отмечают и очень малый уровень энергопотребления, что в случае коммерческой реализации технологии может сделать ее оптимальным выбором для разнообразных мобильных устройств. Хотя вопрос об объемах производства еще обсуждается, PVI уже разослала выпущенные прототипы будущих устройств компаниям-партнерам, работающим в сфере мобильных телефонов, смартфонов и портативных компьютеров. Чем быстрее технология будет принята для маленьких и средних экранов, тем скорее она может появиться и в более крупных устройствах, таких, как телевизионные панели.

    MEMS-источники питания для портативных устройств

    Одно из новых и перспективных направлений - использование MEMS для создания топливных элементов и генераторов питания, которые предназначаются для портативных электронных приборов будущих поколений (CD-проигрыватели, цифровые камеры, персональные цифровые секретари). Достаточно сказать, что по этой теме на конференции IEEE в феврале прошлого года было представлено более 200 докладов.

    Корпорация Toshiba (http://www.toshiba.co.jp) выпускает топливный элемент с прямым использованием метанола на базе MEMS емкостью 140 см3, с выходной мощностью 1 Вт, рассчитанный на 20 ч работы. Микронасос был разработан для подкачки газов и жидкостей и для поддержания потребляемой мощности и размеров в приемлемых пределах. В конструкции используется полимерный мембранный электролитический узел с катодом и анодом для выполнения функций топливного элемента. Каждый электрод имеет каталитический и газодиффузионный слой. Размеры устройства примерно соответствуют габаритам обычного сотового телефона.

    Большой интерес вызвала совместная разработка мощного генератора питания усилиями разработчиков Технологических институтов штатов Массачусетс и Джорджия. Эта технология основана на микромеханической MEMS-структуре с использованием постоянного магнита. Генераторы представляют собой трехфазные, осевые, синхронные машины. При этом каждый из них состоит из многополюсного статора с поверхностной намоткой и ротора на базе постоянного магнита. Микромеханические витки с малыми зазорами между проводниками и с геометрией переменной ширины служат ключевыми элементами, обеспечивающими высокую плотность мощности. При скорости вращения 120 тысяч об./мин генератор продемонстрировал преобразование механической энергии в электрическую на уровне 2,6 Вт. Связанный с трансформатором и выпрямителем генератор обеспечивает на постоянном токе мощность 1,1 Вт на резистивной нагрузке. Для случая активной машины с габаритными размерами 9,5 мм (внешний диаметр), 5,5 мм (внутренний диаметр), 2,3 мм (толщина) это соответствует мощности 10 МВт/м3. Разработчики полагают, что такого рода MEMS-генераторы могут обеспечить мощность от 10 до 100 Вт. Они также считают, что генерирование электрической мощности на данном уровне создает предпосылки для создания масштабируемых устройств с использованием постоянных магнитов для практических применений. Подобные электрические генераторы могут приводиться в действие различными первичными источниками, включая поток жидкости, сжатый газ или небольшие двигатели внутреннего сгорания, например, газовые турбины микронных размеров.

    Разработчики из Массачусетского технологического института совместно с Линкольновской лабораторией создали электроквазистатический индукционный турбинный электрогенератор. При саморезонирующем возбуждении была достигнута выходная мощность 192 МВт. Генератор состоит из пяти кремниевых слоев, сплавленных при 700 град. Статор представляет собой структуру из оксидноплатинового электрода, сформированного на углубленном островке оксида, а ротор - это тонкая пленка из слаболегированного поликремния, расположенного также на островке оксида. Генерирование мощности ограничивается внутренними и внешними емкостями, поэтому для достижения более высоких уровней мощности необходимо моделирование.

    Новый подход, предложенный сотрудниками Калифорнийского технологического института, заключается в использовании MEMS-матриц жидкостных роторных электретных генераторов питания. Эти устройства представляют собой конденсаторы статического заряда, покрытые тефлоном, с зазорами, заполненными воздухом и жидкими капельками, которые перемещаются при вибрации. При перемещении жидкости между зазороми на конденсаторе генерируется результирующее напряжение, в то время как зеркальный заряд перераспределяется на электроде в соответствии с положением капелек.

    MEMS также перспективны для выпуска инструментов в помощь созданию миниатюрных топливных элементов и каталитических химических микрореакторов. Один из инструментов представляет собой пассивный микрорегулятор для контроля потока газа в миниатюрных топливных элементах. Первая такая разработка выполнена совместно корпорацией Сanon и Токийским университетом.

    Наномир на данный момент является своего рода фронтиром – передним краем науки, который пока еще только покоряют ученые-пионеры. А вот микромир уже достаточно давно освоен и в нем вовсю идет строительство. Пожалуй, самым впечатляющим типом микроструктур, которые создаются людьми, являются MEMS – микроэлектромеханические системы.

    Обычно MEMS делят на два типа: сенсоры – измерительные устройства , которые переводят те или иные физические воздействия в электрический сигнал, и актуаторы (исполнительные устройства) – системы, которые занимаются обратной задачей, то есть переводом сигналов в те или иные действия. В этой части статьи поговорим о первой категории MEMS.

    Датчики движения

    Пожалуй, самыми «трендовыми» из MEMS-сенсоров являются датчики движения. Они в последнее время постоянно на слуху: телефоны, коммуникаторы, игровые приставки, фотокамеры и ноутбуки все чаще и чаще снабжаются акселерометрами (датчиками ускорения) и гироскопами (датчиками поворота).

    В мобильных телефонах и видеоприставках чувствительность к движениям пользователя используется в основном, что называется, «для прикола». А вот в портативных компьютерах акселерометры выполняют очень даже полезную функцию: улавливают момент, когда жесткий диск может подвергнуться повреждению из-за удара и паркуют его, диска, головки. В фототехнике использование датчиков движения не менее актуально – именно на их основе работают честные системы стабилизации изображения.

    Классический гироскоп образца XIX века. Засунуть такой в iPhone или джойстик Wii довольно-таки затруднительно

    Впрочем, рассуждать о том, что в реальности полезнее – активные игры на Wii, функция автоматического поворота картинки на iPhone, защита винчестера или возможность снимать фотографии без смазывания – дело неблагодарное. Покупателям нравится и то, и другое, и третье, и четвертое. Поэтому производители в последнее время стараются как можно более плотно использовать датчики движения.

    Благо, возможностей у них для этого предостаточно: автопроизводители (из массовых индустрий они первыми опробовали данного рода устройства) уже несколько десятилетий активно эксплуатируют датчики движения, например, в подушках безопасности и антиблокировочных системах тормозов.

    Так что соответствующие чипы давно разработаны, выпускаются целым рядом крупных и сравнительно мелких компаний и производятся в таких количествах, что цены давно и надежно сбиты до минимума. Типичный MEMS-акселерометр сегодня обходится в несколько долларов за штуку.

    И места занимает – всего ничего. Для примера, размер корпуса пьезогироскопа Epson XV-8000 составляет 6×4,8×3,3 мм, а трехосного акселерометра LIS302DL производства ST Microelectronics – всего лишь 3×5×0,9 мм. Причем речь именно о размерах готового устройства с корпусом и контактами – сам кристалл еще меньше.

    Датчик движения Epson XV-8000. И это далеко не самый компактный MEMS-сенсор

    На сегодняшний день наиболее популярны датчики движения, основанные на конденсаторном принципе. Подвижная часть системы – классический грузик на подвесах. При наличии ускорения грузик смещается относительно неподвижной части акселерометра. Обкладка конденсатора, прикрепленная к грузику, смещается относительно обкладки на неподвижной части. Емкость меняется, при неизменном заряде меняется напряжение – это изменение можно измерить и рассчитать смещение грузика. Откуда, зная его массу и параметры подвеса, легко найти и искомое ускорение.

    Основной принцип работы конденсаторных акселерометров

    Это теория. На практике, MEMS-акселерометры устроены таким образом, что отделить друг от друга составные части – грузик, подвес, корпус и обкладки конденсатора – не так-то просто. Собственно, изящество MEMS в том и заключается, что в большинстве случаев в одной детали здесь удается (а вернее, попросту приходится) комбинировать сразу несколько предметов.

    Относительно простой, но чрезвычайно миниатюрный и чувствительный MEMS-акселерометр разработки Sandia Labs

    Зачастую, современные MEMS-гироскопы устроены идентично акселерометрам. Просто в них значения ускорений по осям пересчитываются в значения углов поворота – конструкция примерно та же, но на выходе другая величина.

    Гироскоп L3G4200D производства ST Microelectronics используется в iPhone 4

    Тот же STM L3G4200D, фотография с большим увеличением

    Однако встречаются и гироскопы, устройство которых «заточено» именно под вращение. Такие MEMS – одни из красивейших.

    Еще один гироскоп ST Microelectronics – LYPR540AH

    Крупный план STM LYPR540AH. Толщина деталей этой ажурной конструкции – около 3 микрон!

    Еще один MEMS-гироскоп

    Помимо конденсаторных датчиков, существуют MEMS-акселерометры, использующие иные принципы. Например, датчики, основанные на пьезоэффекте. Вместо смещения обкладок конденсатора, в акселерометрах такого типа происходит давление грузика на пьезокристалл. Основной принцип тот же, что и в пьезозажигалках – под воздействием деформации пьезоэлемент вырабатывает ток. Из значения напряжения, зная параметры системы, можно найти силу, с которой грузик давит на кристалл – и, соответственно, рассчитать искомое ускорение.

    Основной принцип работы акселерометров на пьезоэлементах

    Есть и более экзотический тип MEMS-акселерометров – термальные датчики ускорения. В них в качестве основного объекта используется горячий пузырек воздуха. При движении пузырек отклоняется от центра системы, это отслеживается датчиками температуры. Чем дальше сместился пузырек – тем больше величина ускорения.

    Двухосный термальный акслерометр

    Микрофоны

    Менее популярный в статьях и обсуждениях, но гораздо более массовый тип MEMS-устройств – микроскопические микрофоны. Опять-таки, наиболее распространенными системами этого типа являются те, которые основаны на конденсаторном принципе.

    Устроены они – проще некуда. Принципиально важных элементов в таком микрофоне всего два: это гибкая обкладка – мембрана, и более толстая, неподвижная обкладка. Под воздействием давления воздуха мембрана смещается, изменяется емкость между обкладками – при постоянном заряде изменяется напряжение. Эти данные пересчитываются в амплитуды и частоты звуковой волны.

    Чтобы минимизировать влияние давления воздуха на неподвижную обкладку, эта обкладка перфорируется. Кроме того, под ней делается сравнительно большая ниша с обязательным вентиляционным отверстием. Идея в том, что единственным подвижным элементом в системе в идеале должна быть мембрана – и только она.

    микроэлектромеханический микрофон под микроскопом. Диаметр мембраны чуть больше половины миллиметра

    Как и в случае с акселерометрами, здесь может быть использован пьезоэффект – в этом случае под мембраной ставится пьезокристалл. Дальше – как и в случае пьезоакселерометров: давление воздуха передается мембраной на пьезоэлемент, под этим воздействием кристалл вырабатывает ток. Напряжение измеряется и переводится в амплитуду и частоту звука.

    Самый миниатюрный MEMS-микрофон компании Akustica (площадь кристалла – 1 кв.мм) теряется рядом со своими более крупными родственниками

    Датчики давления

    То, что годится для звука, подходит и для измерения давления в иных областях. Похожие на микрофоны MEMS-системы могут использоваться в качестве датчиков давления. Несложно догадаться, что применение такие сенсоры находят в уйме областей.

    Но можно выделить одну область, которая является наиболее интересной и наиболее специфичной для датчиков давления, основанных на MEMS-технологии. Это медицина. Здесь размер действительно имеет значение. Если в какой-нибудь трубопровод вполне можно встроить «обычный», макроскопический датчик, то с кровеносным сосудом такой фокус, очевидно, не получится. Тут нужны очень и очень компактные решения.

    Ультракомпактный и высокоточный датчики давления на фоне одноцентовой монеты (по размеру она примерно эквивалентна нынешним русским 50 копейкам)

    Разумеется, в медицине востребованы не только датчики давления. Существует множество микроскопических биодатчиков, измеряющих массу разнообразных величин – от температуры до уровня глюкозы. Есть и более неожиданные устройства, вроде микроскопических систем подачи лекарств. И, разумеется, есть куча интереснейших прототипов, многие из которых в принципе не имеют аналогов среди макроустройств.

    Прототип щипцов для микрохирургии глаза. Размеры головки щипцов – порядка 1,5х1,5 миллиметра. Толщина губ – несколько десятков микрон. Человеческий волос этими щипцами подцепить не получится – он для них слишком толстый

    Что ж, разговор о MEMS-сенсорах мы на этом завершим. Впереди у нас еще более интересная и захватывающая тема: MEMS-актуаторы. Печатающие головки струйных принтеров, микрозеркальные матрицы, элементы оптико-волоконных сетей и многое другое. Обещаем: скучно не будет!

    Реальная мощь технологии МЭМС заключается в возможности одновременного создания на поверхности пластины множества механизмов без единой сборочной операции. Поскольку процесс подобен классической фотолитографии, изготовить на подложке миллион механизмов так же просто, как и один.

    Эти становящиеся вездесущими крошечные машины быстро пробили себе дорогу во множество коммерческих и военных приложений.

    При изготовлении МЭМС используется несколько основных технологий, которые мы рассмотрим ниже.

    Объемная микрообработка

    Объемная микрообработка - это производственный процесс, идущий от поверхности кремниевой пластины вглубь, при которой химическим травлением последовательно удаляются ненужные участки кремния, в результате чего остаются полезные механизмы. Традиционным фотоспособом на пластине формируется рисунок, защищающий те участки, которые необходимо сохранить. Затем пластины погружаются в жидкий травитель, в качестве которого может использоваться гидроксид калия, «съедающий» незащищенные участки кремния. Технология объемной микрообработки относительно проста и недорога, и хорошо подходит для не слишком сложных приложений, критичных к цене.

    Практически все датчики давления изготавливаются сегодня с помощью объемной микрообработки. По ряду параметров они превосходят традиционные датчики давления, так как намного более дешевы, исключительно надежны, технологичны и имеют хорошую воспроизводимость параметров.

    В любом современном автомобиле обязательно есть несколько микромеханических датчиков давления. Типичное пример их использования - измерение давления во впускном коллекторе двигателя.

    Миниатюрность и высочайшая надежность изготовленных объемной микрообработкой датчиков давления делают их идеальными компонентами также и для различных медицинских приложений.

    Поверхностная микрообработка

    В противоположность объемной микрообработке, суть которой заключается в послойном удалении материала с поверхности пластины с помощью травления, при поверхностной микрообработке происходит последовательное наращивание слоев материала на кремний.

    Типичный процесс поверхностной микрообработки представляет собой повторяющуюся последовательность нанесения на поверхность пластины тонких пленок, формирования на пленке защитного рисунка методом фотолитографии и химического травления пленки. Чтобы создать подвижные, функционирующие механизмы, в слоях чередуют тонкие пленки конструкционного материала (обычно это кремний) и заполнителя, называемого также абляционным материалом (как правило, двуокись кремния). Из конструкционного материала образуются механические элементы, а абляционный материал заполняет пустоты между ними. На последнем этапе заполнитель удаляется травлением, и конструкционные элементы приобретают подвижность и функциональность.

    Если в качестве конструкционного материала используется кремний, а заполнителем служит двуокись кремния, финальный этап состоит в погружении пластины в плавиковую кислоту, которая быстро вытравливает заполнитель, оставляя кремний нетронутым.

    Затем, в типичном случае, пластины разрезаются на отдельные кристаллы, которые, в свою очередь, упаковываются в корпуса той или иной конструкции, соответствующей требуемому приложению.

    Поверхностная микрообработка требует большего количества технологических операций, чем объемная, и, соответственно, она дороже. Поверхностная микрообработка используется для создания более сложных механических элементов.


    LIGA (от немецкого LItographie, Galvanoformung и Abformung - литография, гальваностегия, формовка) - это технология, позволяющая методами рентгенолитографии создавать небольшие элементы с относительно большим отношением высоты к ширине. Процесс изготовления в типичном случае начинается с нанесения фотомаски на поверхность листа полиметилметакрилата (ПММА). Затем ПММА подвергается экспонированию рентгеновскими лучами высокой энергии. Экспонированные участки, не защищенные маской, удаляются с помощью подходящего травителя, в результате чего образуются исключительно точные микроскопические механические элементы.

    Технология LIGA относительно дешева и хорошо подходит для приложений, требующих большего коэффициента соотношения сторон, чем можно получить с помощью поверхностной микрообработки.

    Глубокое реактивное ионное травление

    От традиционной объемной микрообработки глубокое реактивное ионное травление (Deep Reactive Ion Etching - DRIE) отличается только тем, вместо влажного химического травления для создания фигур используется плазменное. Это позволяет намного гибче управлять профилями травления и существенно расширить ассортимент изготавливаемых элементов. Производственное оборудование для ионного травления весьма дорого, поэтому и приборы, созданные по технологии DRIE, как правило, дороже приборов, сделанных с использованием традиционного влажного травления.

    Интегрированные МЭМС технологии

    Поскольку для создания МЭМС используется то же оборудование и те же технологии, что и для изготовления интегральных схем, ничто не мешает формировать электронные схемы на одном кристалле с микромеханизмами. Это позволяет снабжать микромашины интеллектом и создавать очень интересные устройства.



    
    Top