Магистральные сети. Магистральные сети связи. Значение характеристики ВОК

Александр Крейнес

Одно из главных преимуществ технологии АТМ - возможность задавать для потоков трафика тот или иной уровень обслуживания (quality of service, QoS), определяющий, по существу, степень приоритетности трафика при передаче его по сети. Существуют четыре уровня QoS - CBR (constant bit rate), VBR (variable bit rate), ABR (available bit rate) и UBR (unspecified bit rate).

Первые два используются, как правило, для передачи высокоприоритетного трафика, чувствительного к задержкам (в частности, аудио- или видеоинформации); они позволяют гарантировать определенную полосу пропускания для передаваемого трафика. ABR и UBR предназначены для менее приоритетного трафика, генерируемого, например, при объединении удаленных сегментов локальной сети.

Требуемый уровень QoS определяется приложением, от которого исходит трафик. Выделение полосы пропускания в соответствии с определенной категорией QoS происходит при формировании виртуального пути от исходной точки к точке назначения. Генерирующее трафик приложение, естественно, всегда устанавливается в вычислительной сети клиента, поэтому QoS должно "заказываться" устройством доступа к сети АТМ.

Тема с вариациями

Существуют несколько способов обеспечения доступа клиентов к сети АТМ. В точке присутствия провайдера услуг ATM может быть установлен пограничный мультиплексор ATM (edge mux). Такой мультиплексор "собирает" трафик от клиентов и направляет его в сеть АТМ. Трафик от клиента к мультиплексору передается самыми разными способами: по каналу Е-1 (голосовой трафик от УАТС), по полному или частичному каналу E-1 или frame relay (трафик данных) и, наконец, по протоколу АТМ. Какие именно каналы и протоколы используются для передачи трафика от пользователя, определяется установленным у него оборудованием и теми задачами, которые ему нужно решать.

Бесспорным достоинством такого способа является то, что у клиента не надо устанавливать какое-либо дополнительное оборудование. Хотя сам пограничный мультиплексор - вещь довольно дорогая, все же, пойдя по этому пути, оператор может несколько сэкономить.

Однако отказ от установки провайдерского оборудования на территории клиента приводит и к некоторым проблемам. Заказывать уровни QoS способен только пограничный мультиплексор, поэтому эти уровни устанавливаются раз и навсегда - в момент заключения контракта между клиентом и оператором - в соответствии с характером передаваемого трафика (голосовому трафику - высокий уровень, трафику LAN-to-LAN - низкий). При изменении характера трафика клиенту приходится заключать новый договор с оператором сети, что довольно неудобно.

Еще один недостаток - возникновение "ничейной территории" между пограничным мультиплексором и информационной системой клиента. Система управления провайдерской сетью "дотягивается" только до пограничного мультиплексора, каналы же связи с клиентским оборудованием из этой системы выпадают. Такая неопределенность может приводить к возникновению недоразумений при выяснении причин сбоев в работе информационной системы. Доступ с помощью устройств, устанавливаемых в точке присутствия, применяется, например, в городской сети АТМ компании "Нижегородские информационные системы" (там, правда, в основном используются не мультиплексоры, а коммутаторы доступа от FORE Systems, связываемые с клиентской сетью по волоконно-оптическим каналам Ethernet на 10 Мбит/с).

От перечисленных недостатков свободно решение, предусматривающее установку устройства, передающего трафик по протоколу ATM (которое чаще всего является собственностью оператора сети), на территории пользователя (customer premises equipment, CPE). Этим подходом весьма часто пользуются операторы сетей, базирующихся на различных технологиях; в качестве CPE может выступать, например, маршрутизатор (в IP-сетях) или модуль CSU/DSU (channel service unit/data service unit).

Что касается сетей ATM, то до самого последнего времени у оператора сети, желающего воспользоваться CPE, имелись две возможности: либо установить в оборудование для локальной сети модуль связи с магистральной сетью (uplink), либо подключить пограничный мультиплексор прямо у пользователя (а не в точке присутствия).

Первый способ имеет одно очевидное преимущество - он связан с относительно небольшими затратами. Конечно, сам ATM-uplink что-то стоит, однако его цена все же не слишком высока. Недостатки подхода: во-первых, такие модули чаще всего не поддерживают QoS, во-вторых, их работой оператор управлять не может, а в-третьих, они обычно не поддерживают объединение нескольких сервисов в одном устройстве. Впрочем, благодаря своей дешевизне, это решение пользуется определенной популярностью; в частности, именно таким образом организован доступ к Новгородской городской сети АТМ (в сервер локальной сети, подключаемой к АТМ, встраивается адаптер АТМ; на сервере устанавливается программное обеспечение для маршрутизации сообщений).

Установка пограничного мультиплексора у пользователя, конечно, позволяет решить все проблемы, однако стоимость подобного устройства настолько высока (несколько десятков тысяч долларов), что оно оказывается по зубам только крупным компаниям. Да и немного найдется охотников стрелять из пушки по воробьям! Во всяком случае, какие-либо примеры использования этого подхода на российской земле нам неизвестны - если кто-то сможет нас просветить, будем рады.

Совсем недавно компания RAD data communications предложила устройство класса CPE, в котором использован подход, промежуточный между двумя указанными. Идея состоит в том, что на территории клиента устанавливается относительно несложное (а следовательно, недорогое) устройство, принимающее АТМ-трафик от локальной сети и "подготавливающее" его для передачи в магистральную сеть. Именно такое устройство осуществляет выбор уровня обслуживания и именно в нем сосредотачиваются все функции управления потоком данных, необходимые для передачи по виртуальному каналу трафика с заданным QoS. Эти устройства как бы берут на себя часть интеллектуальной работы по обработке трафика, поэтому позволяют оператору сети обходиться менее интеллектуальными устройствами в точках присутствия сети (например, вместо мультиплексоров доступа можно использовать концентраторы). RAD предложила называть такую конфигурацию "распределенным интеллектом".

С точки зрения взаимоотношений между оператором и клиентом, распределенный интеллект управления сетью имеет еще одно несомненное достоинство. На этом пути можно добиться гибкого биллинга услуг. В идеале, плата за пользование сетью должна четко зависеть от того, насколько сильно клиент загружает ресурсы сети. Для этого необходимо определять, какой объем трафика и на каком уровне QoS клиент передает в сеть и получает из нее. Ясно, что размещение интеллектуальных устройств на территории клиента позволяет решить эту проблему. Кроме того, клиент получает возможность следить за тем, чтобы ему предоставлялись именно те услуги, которые оговорены в контракте.

Как управлять трафиком

Поток трафика, передаваемый через сеть в рамках того или иного виртуального пути, характеризуется рядом количественных показателей. Их конкретные значения как раз и определяют уровень QoS, соответствующий данному потоку трафика. Поэтому интеллектуальное устройство доступа должно уметь их регулировать.

Все параметры можно разделить на две группы - локальные и интервальные. Локальными параметрами (измеряются в точке входа в сеть) являются:

  • PCR - Peak Cell Rate (максимальная скорость передачи ячеек);
  • SCR - Sustainable Cell Rate (средняя скорость передачи ячеек);
  • CDVT - Cell Delay Variation Tolerance (допустимый разброс задержки ячеек);
  • MCR - Minimum Cell Rate (минимальная скорость передачи ячеек);
  • BS - Maximum Burst Size (максимальное число ячеек, передаваемых на скорости PCR).

Интервальные параметры (измеряются на отрезке между точками входа и выхода):

  • запаздывание ячеек;
  • вариация запаздывания ячеек;
  • потеря ячеек.

В рекомендациях I.371 и I.610 Международного союза электросвязи, МСЭ (International Telecommunications Union, ITU) описаны пять механизмов управления трафиком в сетях АТМ; они позволяют добиться того, чтобы локальные параметры и параметры передачи соответствовали заданному значению QoS. Для управления локальными параметрами используются три механизма:

  • мониторинг трафика - проверка ячеек на соответствие заданным значениям локальных параметров;
  • управление трафиком (policing) - ячейки, не отвечающие требованиям, помечаются и при возникновении заторов отбрасываются в первую очередь;
  • формирование трафика - буферизация трафика, входящего в сеть, и такая его модификация, чтобы выдерживались заданные значения локальных параметров.

Интервальными параметрами можно управлять при помощи двух механизмов: мониторинга потери ячеек и мониторинга запаздывания ячеек.

Локальные параметры характеризуют трафик, передаваемый в сеть. Поэтому ими можно управлять в точке доступа; никаких параметров работы сети в целом при этом знать не нужно. Интервальные параметры характеризуют весь виртуальный путь передачи данных по сети; для управления ими надо уметь получать информацию о состоянии всей сети.

В стандарте МСЭ I.160 описан конкретный протокол управления интервальными параметрами - OAM (Opertaion, Administration and Management). В соответствии с данным протоколом, устройства, расположенные на границе сети, должны обмениваться специальными сообщениями, передаваемыми по тому же виртуальному пути, что и данные. При этом удается, во-первых, быстро отслеживать отказы каналов передачи данных, а во-вторых, определять значения обоих интервальных параметров.

В предложенных RAD устройствах протокол ОАМ реализован. Таким образом, они дают возможность управлять параметрами передачи данных на всем пути их следования по сети. На сегодняшний день использование таких устройств - единственный экономичный способ обеспечить управление трафиком на всем пути его передачи через провайдерскую сеть. Альтернативным методом сквозного управления трафиком является установка на территории клиента больших и довольно дорогих мультиплексоров доступа.

В принципе, протокол ОАМ способен помочь в управлении не только сквозной передачей трафика по сети, но и работой отдельных ее сегментов. Любые два поддерживающих этот протокол устройства могут обмениваться ячейками ОАМ, отслеживая состояние соединяющего их канала. Ясно, что для внедрения такого режима управления протокол ОАМ должен поддерживаться всеми входящими в сеть устройствами, чего на данный момент добиться невозможно, поскольку далеко не все производители это обеспечивают. В будущем, скорее всего, поддержка ОАМ будет расцениваться операторами сети как серьезное преимущество устройства, что заставит производителей позаботиться о его реализации в своих продуктах.

Как это делается

Компания RAD Data Communications предложила целое семейств абонентских устройств доступа к сети под названием ACE. Первым появилось устройство ACE-101, которое рассчитано на передачу трафика из локальной сети АТМ в публичную. Устройство снабжено двумя интерфейсами: один для пользовательской сети АТМ, другой - для публичной. Поддерживаются следующие интерфейсы: 155 Мбит/с по одно- или многомодовому оптическому кабелю и неэкранированной витой паре пятой категории, а также STM-1, E3 и T3 по коаксиальному кабелю.

Система управления локальными параметрами трафика рассчитана на поддержание трех уровней QoS: VBR, CBR и UBR. Управление параметрами осуществляется для всех виртуальных путей и виртуальных каналов. Для мониторинга параметров передачи трафика используется протокол OAM уровня АТМ. Устройство может проверять, все ли данные, в момент передачи удовлетворявшие требованиям к локальным параметрам, достигли точки назначения. Поддерживается одновременное управление производительностью для 16 двунаправленных (32 однонаправленных) виртуальных путей или каналов.

Устройство обеспечивает согласование скоростей публичной и частной сетей. Для этого используется буфер емкостью 6000 ячеек, в котором могут быть организованы очереди четырех уровней приоритетов, распределение по которым осуществляется в соответствии с тем, к какому уровню QoS относятся передаваемые ячейки.

ACE-101 обеспечивает сбор статистики трафика и ведение контрольного журнала событий. Устройство может поддерживать до четырех виртуальных каналов для управления работой сети. Приложение управления сетью RADview-HPOV обеспечивает управление на уровнях PHY и ATM. Кроме того, возможен анализ работы каждого виртуального канала.

При всей привлекательности ACE-101 у него есть и ряд недостатков. Прежде всего, цена - свыше 5000 дол. за одно устройство. RAD может сколько угодно утверждать, что это недорого (безусловно, по сравнению с пограничными мультиплексорами стоимость действительно невысока), однако для российских операторов, особенно региональных, такая цена может показаться немалой. Второй недостаток - устройство рассчитано на сопряжение локальных сетей АТМ с глобальными. Между тем, в локальных сетях данная технология применяется не так часто. Можно, конечно, подсоединять к ACE-101 канал от модуля связи с магистральной сетью (рис.1), встроенного в маршрутизатор, - но что тогда делать с QoS?

Рисунок 1.
Схема доступа к сети АТМ с использованием устройств АСЕ-101

В самое последнее время RAD анонсировала еще два устройства - модуль доступа к сетям АТМ по под названием ACE-2-E1 и концентратор доступа ACE-20-E1. Они еще не поступили в продажу, но операторы могут получить их для тестирования. Для связи с магистральной сетью в обоих устройствах применяется протокол ATM E1 UNI. Со стороны локальной сети ACE-2-E1 имеет один вход, к которому подключается либо установленный в локальный сети маршрутизатор или мост (для этого используется протокол ATM DXI, и Data Exchange Interface), либо FRAD (frame relay access device, устройство доступа к сети frame relay), которое, как легко понять, подключается к ACE-2 по каналу frame relay.

Устройство способно выполнять преобразование кадров frame relay в ячейки АТМ как по методу Frame Relay - ATM network interworking, так и по методу Frame Relay - ATM service interworking. ACE-2 может самостоятельно осуществлять трансляцию услуги IP-over-Frame Relay в IP-over-ATM.

Концентратор ACE-20 имеет три порта со стороны локальной сети. Фактически, это первое многопротокольное абонентское устройство доступа. К локально-сетевым портам ACE-20 можно подключать, например, маршрутизатор по каналу ATM DXI, УАТС по частичному каналу E-1 и FRAD по каналу frame relay (рис. 2). ACE-20 умеет автоматически распределять имеющуюся в его распоряжении полосу пропускания между всеми потоками трафика, поддерживая при этом необходимый уровень обслуживания для каждого из них. К сожалению, такие устройства стоят еще довольно дорого (несколько тысяч долларов), хотя они и заметно дешевле ACE-101.

Рисунок 2.
Схема доступа к магистральной сети с использованием концентратора ACE-20

В настоящее время в реальных приложениях ACE-101 сделаны только первые шаги. Выполнен пилотный проект с использованием этих устройств в British Telecom; ACE-101 находится на тестировании у ряда других ведущих операторов. RAD ведет переговоры с некоторыми крупными российскими операторами о тестировании устройств и выполнении пилотных проектов. Представители компании утверждают, что в ближайшем будущем можно ждать интересных новостей. Что ж, посмотрим.

Целесообразно делить территориальные сети, используемые для построения корпоративной сети, на две большие категории:

· магистральные сети;

· сети доступа.

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Обычно в качестве магистральных сетей используются цифровые выделенные каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов frame relay, ATM, X.25 или TCP/IP. При наличии выделенных каналов для обеспечения высокой готовности магистрали используется смешанная избыточная топология связей, как это показано на рис. 20.5.

Рис. 20.5. Структура глобальной сети предприятия

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступа к центральной базе данных для получения информации о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.



К сетям доступа предъявляются требования, существенно отличающиеся от требований к магистральным сетям. Так как точек удаленного доступа у предприятия может быть очень много, одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков килобит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности Internet. Транспортные услуги Internet дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение компьютеров или локальных сетей удаленных пользователей к корпоративной сети, называются средствами удаленного доступа . Обычно на клиентской стороне эти средства представлены модемом и соответствующим программным обеспечением.

Организацию массового удаленного доступа со стороны центральной локальной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS) . Сервер удаленного доступа представляет собой программно-аппаратный комплекс, который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет ту или иную функцию в зависимости от типа протокола, по которому работает удаленный пользователь или удаленная сеть. Серверы удаленного доступа обычно имеют достаточно много низкоскоростных портов для подключения пользователей через аналоговые телефонные сети или ISDN.

Показанная на рис. 20.5. структура глобальной сети, используемой для объединения в корпоративную сеть отдельных локальных сетей и удаленных пользователей, достаточно типична. Она имеет ярко выраженную иерархию территориальных транспортных средств, включающую высокоскоростную магистраль (например, каналы SDH 155-622 Мбит/с), более медленные территориальные сети доступа для подключения локальных сетей средних размеров (например, frame relay) и телефонную сеть общего назначения для удаленного доступа сотрудников.

Глобальная сеть Internet - самая крупная и единственная в своем роде сеть в мире. Среди глобальных сетей она занимает уникальное положение. Правильнее ее рассматривать как некоторую надсеть - объединение многих сетей, сохраняющих самостоятельное значение. Действительно, Internet не имеет ни четко выраженного владельца, ни национальной принадлежности. Любая сеть может иметь связь с Internet и, следовательно, рассматриваться как ее часть, если в ней используются принятые для Internet протоколы TCP/IP или имеются конверторы в протоколы TCP/IP. Практически все сети национального и регионального масштабов имеют выход в Internet.

Типичная территориальная (национальная) сеть имеет иерархическую структуру.

Верхний уровень - федеральные узлы, связанные между собой магистральными каналами связи. Магистральные каналы физически организуются на ВОЛС или на спутниковых каналах связи. Средний уровень - региональные узлы, образующие региональные сети. Они связаны с федеральными узлами и, возможно, между собой выделенными высоко- или среднескоростными каналами, такими, как каналы Т1, Е1, B-ISDN или радиорелейные линии. Нижний уровень - местные узлы (серверы доступа), связанные с региональными узлами преимущественно коммутируемыми или выделенными телефонными каналами связи, хотя заметна тенденция к переходу к высоко- и среднескоростным каналам. Именно к местным узлам подключаются локальные сети малых и средних предприятий, а также компьютеры отдельных пользователей. Корпоративные сети крупных предприятий соединяются с региональными узлами выделенными высоко- или среднескоростными каналами.

Иерархическая архитектура Internet может быть представлена так, как на рис. 20.1.

Рисунок 20.1 - Иерархическая структура территориальной сети

Внутри каждой автономной системы (AS) используется некоторый единый внутренний протокол маршрутизации, например IGP. Между AS маршрутизация подчиняется внешним протоколам, например EGP.

Информационная система WWW.

WWW (World Wide Web - всемирная паутина) - гипертекстовая информационная система сети Internet. Другое ее краткое название - Web. Это более современная система по сравнению с Gopher и предоставляет пользователям большие возможности.

Во-первых, это гипертекст - структурированный текст с введением в него перекрестных ссылок, отражающих смысловые связи частей текста. Слова-ссылки выделяются цветом и/или подчеркиванием. Выбор ссылки вызывает на экран связанный со словом-ссылкой текст или рисунок. Можно искать нужный материал по ключевым словам.

Во-вторых, облегчено по сравнению с Gopher представление и получение графических изображений. К 1996 г. в мире насчитывалось около 30 тысяч WWW-серверов.

Информация, доступная по Web-технологии, хранится в Web-серверах. Сервер имеет программу Listener, постоянно отслеживающую приход на определенный порт (обычно это порт 80) запросов от клиентов. Сервер удовлетворяет запросы, посылая клиенту содержимое запрошенных Web-страниц или результаты выполнения запрошенных процедур.

Клиентские программы WWW называют браузерами (brousers). Имеются текстовые (например, Lynx) и графические (наиболее известны Netscape Navigator и MS Explorer) браузеры. Sun предлагает браузер HotJava. В браузерах имеются команды листания, перехода к предыдущему или последующему документу, печати, перехода по гипертекстовой ссылке и т.п. Из браузеров доступны различные сервисы - FTP, Gopher, USENET, E-mail. Для подготовки материалов для их включения в базу WWW разработаны специальный язык HTML (Hypertext Markup Language) и реализующие его программные редакторы, например Internet Assistant в составе редактора Word или SiteEdit, подготовка документов предусмотрена и в составе большинства браузеров.

Для связи Web-серверов и клиентов разработан протокол HTTP, работающий на базе TCP/IP. Web-сервер получает запрос от браузера, находит соответствующий запросу файл и передает его для просмотра в браузер. Популярными серверами являются Apache Digital для ОС Unix, Netscape Enterprise Server и Microsoft Internet Information Server (IIS), которые могут работать как в Unix, так и в Windows NT, и Netware Web Server, предназначенный для работы в ОС Netware. Все три сервера поддерживают язык CGI, имеют встроенный HTML-редактор. Кроме того, в первых двух из них поддерживается стандарт шифрования SSL (Secure Sockets Layer) для защиты передаваемых по сети данных от несанкционированного доступа. Опыт показывает, что для крупных серверов предпочтительнее платформа Unix, тогда как для серверов с малым числом транзакций лучше подходит ОС Windows NT.

На базе HTML создан язык виртуальной реальности VRML (Virtual Reality Modeling Language)- в нем дополнительно можно использовать 3D графику.

В новых ОС (например, ОС Cairo) ожидается появление специальных средств поиска информации в серверах Internet. Пример такой технологии RDF (Resource Definition Format) - упорядочение метаинформации наподобие библиотечных каталогов (классификация по содержанию). В настоящее время для облегчения поиска применяют информационно-поисковые системы (ИПС), располагаемые на доступных пользователям Internet серверах. В этих системах собирается, индексируется и регистрируется информация о документах, имеющихся в обслуживаемой группе Web-серверов. Индексируются или все значащие слова, имеющиеся в документах, или только словаиз заголовков. Пользователю предоставляется возможность обращаться к серверу с запросами на естественном языке, с сложными запросами, включающими логические связки. Примером таких ИПС может служить AltaVista. Например, для функционирования AltaVista фирма DEC выделила 6 компьютеров, самый мощный из них - 10-процессорная ЭВМ Alpha-8400, база данных имеет объем в 45 Гбайт. В этой ИПС к 1996 г. была собрана информация с 30 миллионов страниц Web-серверов.

18.Примеры телекоммуникационных сетей . Как сказано выше, крупнейшей международной глобальной сетью (а точнее сетью сетей) является сеть Internet. В 1996 г. к ней уже было подключено несколько десятков миллионов ЭВМ из более чем 140 стран. Сеть работает на протоколах TCP/IP. Сеть гетерогенная, узлы могут быть с ОС Unix, VMS, MS DOS и др. Взаимодействие узлов с разными ОС осуществляется через посредство файловой системы NFS. Unix-узлы подключаются непосредственно, другие узлы должны быть оснащены программами PCNFS или PCTCP. Для электронной почты используется несколько протоколов, один из них SMTP. Именно в Internet бурно развиваются рассмотренные выше технологии WWW, Telnet, FTP, DVE и т.п.

В настоящее время (1998 г.) в США реализуется несколько проектов развития национальных сетей с перспективой перехода в глобальный статус. В частности, это проект Internet2.

С 1995 г. в США функционирует сеть vBNS (Very high-performance Network Service). В этой сети используется технология IP-over-ATM. Корневая сеть построена на ВОЛС с пропускной способностью 622 Мбит/с. Внешние шлюзы представлены ATM-переключателями ASX-1000. К портам ASX-1000 подсоединяются непосредственно или через маршрутизаторы Cisco 7507 cети крупных научных и образовательных центров и автономные системы.

Global Network - планируемая фирмой IBM глобальная сеть ATM. Стратегическая задача - пользователи подписываются на ассортимент приложений и услуг, предоставляемых по сети, вместо покупки и сопровождения собственного программного обеспечения.

Среди множества других сетей отметим следующие.

DECNet - территориальная сеть фирмы DEC. Сеть стала открытой, благодаря сетевому программному обеспечению Pathworks. Pathworks поддерживает такие сетевые технологии, как Novell Netware, LAN Manager, AppleTalk. Могут объединяться сети Ethernet, Token Ring, FDDI, X.25. Имеются средства для подключения IBM-mainframes. Реализуется спецификация CORBA - с помощью программы ObjectBroker осуществляются распределенные вычисления.

Глобальная сеть пакетной коммутации СПРИНТ (технологии X.25, FR) основана американской корпорацией Sprint Int. и Центральным телеграфом в Москве, в 1995 г. имела около 20 тыс. абонентов, доступ к Internet по TCP/IP.

Relcom/Relarn - широко известная IP-сеть электронной почты в России, имеющая выход на международные сети. Обеспечиваются также телеконференции в режиме off-line. Relcom - коммерческая сеть, услуги Relarn для университетов России бесплатны.

RUNNET - IP-сеть университетов России. Предполагаемые услуги - электронная почта, файловый обмен, доступ к распределенным БД, телеконференции. Благодаря скоростным каналам связи обеспечивается режим on-line. Верхний уровень сети составляют федеральные узлы (ФУ). Всего в первой очереди предполагается иметь 15 ФУ. ФУ в Москве и Санкт-Петербурге соединены между собой волоконно-оптической связью со скоростью до 2048 кбит/с, они являются центральными для остальных 13 ФУ, подключаемых по топологии "звезда" к одному из центральных ФУ по спутниковым каналам связи (64...512 кбит/с). Через центральные ФУ осуществляется выход на международные сети. Так, Санкт-Петербургский узел имеет волоконно-оптический канал связи с Финляндией и через него с другими международными сетями. Используются наземные станции спутниковой связи Кедр-М или Калинка с модемами SDM-650 и SDM-100. В качестве маршрутизатора в опорной сети (между ФУ) используется аппаратура CISCO 4000. Коммуникации с региональными узлами (РУ) осуществляются через коммуникационный сервер на i486 с ОС BSDi UNIX. Серверы приложений реализуются на компьютерах Pentium. Региональные узлы обслуживают отдельные регионы, число РУ - около 50. Скорости обмена РУ с ФУ - не менее 64 кбит/с.

РОСПАК - федеральная государственная сеть общего пользования. Услуги: электронная почта, доступ к БД в режиме on-line, к Internet, телеконференциям. Передача данных по протоколам X.25, TCP/IP, ведутся работы по реализации технологии АТМ. Пользователи сети работают более чем в 200 городах России. Предполагаются 14 магистральных центров коммутации пакетов, в каждом по 200 портов по 256 кбит/с; не менее 300 региональных центров, в каждом до 40 портов по 64 кбит/с. Терминальные центры - до 8 портов по 9,6 кбит/с, телефонные аналоговые линии.

Информационно-вычислительная сеть МГУ MSUnet имеет связи с рядом региональных и международных сетей: с сетью Спринт (выделенная линия 14,4 кбит/с), через нее с сетью Sprint Link в США (спутниковый канал 64 кбит/с); имеется связь с наземной станцией в Лондоне через спутниковый канал Телепорта (суммарная пропускная способность 2048 Мбит/с); планируется подключение к московскому общегородскому волоконно-оптическому каналу Moscow Backbone. С несколькими институтами РАН связь поддерживается по радиорелейным линиям. Локальная часть сети имеет два транспортных (магистральных) волоконно-оптических канала Ethernet, к которым подключаются внутренние локальные подсети. Удаленные пользователи могут работать в сети через сервер доступа по телефонным линиям и модемы.

Целесообразно делить территориальные сети, используемые для построения корпоративной сети, на две большие категории:

магистральные сети;

сети доступа.

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается график многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа. Обычно в качестве магистральных сетей используются цифровые выделенные каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов frame relay, ATM, X.25 или TCP/IP. Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников

предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и" с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступа к центральной базе данных для получения информации о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.


К сетям доступа предъявляются требования, существенно отличающиеся от требований к магистральным сетям. Так как точек удаленного доступа у предприятия может быть очень много, одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков килобит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности Internet. Транспортные услуги"Мегпе! дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение компьютеров или локальных сетей удаленных пользователей к корпоративной сети, называются средствами удаленного Ооступа. Обычно на клиентской стороне эти средства представлены модемом и соответствующим программным обеспечением.

Организацию массового удаленного доступа со стороны центральной локальной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS). Сервер удаленного доступа представляет собой программно-аппаратный комплекс, который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет ту или иную функцию в зависимости от типа протокола, по которому работает удаленный пользователь или удаленная сеть.

Сеть связи страны (рис. 2.3) состоит из магистральной (уровень транзитных станций - ТС) и зоновых сетей (уровень местных станций – МС) (рис. 2.4). Зоновая сеть организуется в пределах одной-двух областей (или республик, краев). Она подразделяется на внутризоновую и местную (уровень МС). Внутризоновая связь соединяет областной (республиканский, краевой) центр с районами. Местная связь включает сельскую связь (райцентр с колхозами, совхозами и рабочими поселками) и городскую связь. Абоненты зоны охватываются единой семизначной нумерацией, и, следовательно, в зоне может быть до 10 7 телефонов и находятся на уровне доступа.

Магистральная сеть соединяет главный узел (сетевой узел - СУ0) с центрами зон (сетевыми узлами – СУ2, СУ10, СУ12 и т.д.), а также зоны между собой (рис. 2.4). Внутриобластная (внутризоновая) сеть является сетью областного значения.

Эта сеть обеспечивает связью областной центр со своими городами и районными центрами и последние между собой, а также выход их на магистральную сеть (рис. 2.4).

Сеть строится на основе территориально-сетевых (ТСУ) и сетевых (СУ) узлов. Кроме того, сеть связи страны подразделяется на первичную и вторичную.

Рис. 2.3. Структура сети связи страны.

Рис. 2.4. Построение магистральной и зоновой сети.

Первичная сеть - это совокупность всех каналов без подразделения их по назначению и видам связи. В состав ее входят линии и каналообразующая аппаратура. Первичная сеть является единой для всех потребителей каналов и представляет собой базу для вторичных.

Вторичная сеть состоит из каналов одного назначения (телефонных, телеграфных, передачи газет, вещания, видеотелефонных, передачи данных, телевидения и др.), образуемых на базе первичной сети. Вторичная сеть включает коммутационные узлы, оконечные пункты и каналы, выделенные на первичной сети. Вторичные междугородные сети подключаются к первичной сети с помощью соединительных линий между оконечными станциями первичной и вторичных сетей.

2.3. Городские телефонные сети

В общем случае линейные сооружения городской телефонной сети (ГТС) состоят из абонентских (АЛ) и соединительных (СЛ) линий. Для сокращения расходов на строительство линейных сооружений и повышения эффективности их использования в крупных городах (обычно при емкости сети свыше 10 тыс. номеров) строят несколько районных автоматических телефонных станций (РАТС). Такая сеть называется районированной. При этом линии, соединяющие телефонные аппараты с районной телефонной станцией, называются абонентскими, а линии, соединяющие районные станции между собой, - соединительными.

Связь между районными станциями осуществляется одним из следующих способов: по принципу «каждая с каждой», радиальному, с узлами входящего сообщения, с узлами исходящего и входящего сообщений (рис. 2.5). Первый способ обычно применяется на районированных сетях общей емкостью до 80 тыс. номеров. Второй способ используется для связи РАТС с подстанциями или учрежденческими станциями. На крупных сетях образуются узловые телефонные станции с применением третьего или четвертого способа. Кроме того, для выхода на междугородную сеть РАТС связываются с междугородной телефонной станцией непосредственно или через узловые станции.

Построение сетей АЛ осуществляется различными способами, однако все они могут быть сведены к двум основным системам: шкафной и бесшкафной; в Республике Беларусь, как правило, применяется шкафная система.

Рис. 2.5. Построение межстанционных сетей ГТС

Схема устройства линейных сооружений по шкафной системе изображена на рис. 2.6. Здесь показана часть города с распределенными по отдельным кварталам телефонными абонентами. Кроме районной автоматической станции (МС), учережденческих автоматических станций (УАТС1 - УАТС3) и концентраторов (К1 – К5), располагаются места для базовых станций (БС) сотовых систем связи и узлов ввода сигналов кабельного телевидения (КТВ), для которых оператор телефонной сети будет предоставлять информационные транспротные ресурсы. Число пар проводников проложенных кабелей как правило больше числа телефонных абонентов. Это обеспечивает необходимый эксплуатационный запас. Концентраторы К4 и К5 предназначены для обслуживания новых строящихся районов городской застройки. Таким образом сформирована структура транспортной сети абоненского доступа, в которой образованы три кольца.

Включение абонентов в телефонную станцию осуществляется через распределительные коробки (РК) и распределительные шкафы (ШР) (рис. 2.6, б). При этом от телефонной станции в различных направлениях отходят крупные по емкости кабели, которые, разветвляясь на более мелкие, заходят в ШР. Эти кабели вместе с относящимся к ним линейным оборудованием составляют так называемую магистральную сеть. От ШР отходят меньшие по емкости кабели (100-50 пар), которые, разветвляясь, подходят к РК емкостью 10х2. Данные кабели и относящееся к ним линейное оборудование составляют распределительную сеть. От РК к телефонным аппаратам (ТА) абонентов прокладываются однопарные кабели, составляющие абонентскую проводку (рис. 2.6, б).

Рис. 2.6. Построение сети абонентских линий ГТС: а - распределение кабелей по заданиям; б - шкафная система.

Наличие ШР облегчает производство испытания кабелей и дает возможность путем соответствующих переключений в нем соединять любые пары магистрального и распределительного кабелей, что важно при эксплуатации сети, так как на последней обычно имеют место перегруппировки абонентов, появляется необходимость включения новых абонентов, замены цепей в кабелях и т. п.

Кроме того, применение РШ позволяет экономить магистральные кабели. Дело в том, что в РК соответственно их емкости включаются десятипарные распределительные кабели, в то время как число АЛ, включенных в отдельные РК, обычно меньше. Если подвести непосредственно к телефонной станции полную емкость кабелей, включенных в РК, то на значительном расстоянии до телефонной станции образовался бы большой запас кабельных пар, который более или менее продолжительное время оставался бы в значительной мере неиспользованным, что невыгодно. Наличие РШ позволяет иметь эксплуатационный запас кабельных пар магистральной сети значительно меньше запаса в распределительной сети, обеспечивая таким образом экономию емкости магистрального кабеля.

При построении телефонной сети по бесшкафной системе для обеспечения требуемой гибкости сети используется система параллельного включения кабельных жил, сущность которой заключается в том, что одна и та же кабельная пара, идущая от телефонной станции, включается параллельно в несколько РК. Благодаря такому включению достигается уменьшение запасных пар в магистральных кабелях (аналогично распределительным шкафам). Так, например, у кабелей емкостью 20х2 в направлениях А и Б могут идти по семь пар (7х2), причем шесть пар (6х2) могут быть запараллелены и по желанию использованы частично или полностью в направлении А или Б.

При построении телефонных сетей применяется также смешанная система с использованием того или иного способа на тех участках сети, где он является наиболее целесообразным.

Целесообразно делить территориальные сети, используемые для построения корпоративной сети, на две большие категории:

    магистральные сети;

    сети доступа.

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Обычно в качестве магистральных сетей используются цифровые выделенные каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов frame relay, ATM, X.25 или TCP/IP. При наличии выделенных каналов для обеспечения высокой готовности магистрали используется смешанная избыточная топология связей, как это показано на рис. 6.5.

Рис. 6.5. Структура глобальной сети предприятия

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступа к центральной базе данных для получения информации о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.

К сетям доступа предъявляются требования, существенно отличающиеся от требований к магистральным сетям. Так как точек удаленного доступа у предприятия может быть очень много, одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков килобит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности Internet. Транспортные услуги Internet дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение компьютеров или локальных сетей удаленных пользователей к корпоративной сети, называются средствами удаленного доступа . Обычно на клиентской стороне эти средства представлены модемом и соответствующим программным обеспечением.

Организацию массового удаленного доступа со стороны центральной локальной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS) . Сервер удаленного доступа представляет собой программно-аппаратный комплекс, который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет ту или иную функцию в зависимости от типа протокола, по которому работает удаленный пользователь или удаленная сеть. Серверы удаленного доступа обычно имеют достаточно много низкоскоростных портов для подключения пользователей через аналоговые телефонные сети или ISDN.

Показанная на рис. 6.5. структура глобальной сети, используемой для объединения в корпоративную сеть отдельных локальных сетей и удаленных пользователей, достаточно типична. Она имеет ярко выраженную иерархию территориальных транспортных средств, включающую высокоскоростную магистраль (например, каналы SDH 155-622 Мбит/с), более медленные территориальные сети доступа для подключения локальных сетей средних размеров (например, frame relay) и телефонную сеть общего назначения для удаленного доступа сотрудников.

    Глобальные компьютерные сети (WAN) используются для объединения абонентов разных типов: отдельных компьютеров разных классов - от мэйнфреймов до персональных компьютеров, локальных компьютерных сетей, удаленных терминалов.

    Ввиду большой стоимости инфраструктуры глобальной сети существует острая потребность передачи по одной сети всех типов трафика, которые возникают на предприятии, а не только компьютерного: голосового трафика внутренней телефонной сети, работающей на офисных АТС (РВХ), трафика факс-аппаратов, видеокамер, кассовых аппаратов, банкоматов и другого производственного оборудования.

    Для поддержки мультимедийных видов трафика создаются специальные технологии: ISDN, B-ISDN. Кроме того, технологии глобальных сетей, которые разрабатывались для передачи исключительно компьютерного трафика, в последнее время адаптируются для передачи голоса и изображения. Для этого пакеты, переносящие замеры голоса или данные изображения, приоритезируются, а в тех технологиях, которые это допускают, для их переноса создается соединение с заранее резервируемой пропускной способностью. Имеются специальные устройства доступа - мультиплексоры «голос - данные» или «видео - данные», которые упаковывают мультимедийную информацию в пакеты и отправляют ее по сети, а на приемном конце распаковывают и преобразуют в исходную форму - голос или видеоизображение.

    Глобальные сети предоставляют в основном транспортные услуги, транзитом перенося данные между локальными сетями или компьютерами. Существует нарастающая тенденция поддержки служб прикладного уровня для абонентов глобальной сети: распространение публично-доступной аудио-, видео- и текстовой информации, а также организация интерактивного взаимодействия абонентов сети в реальном масштабе времени. Эти службы появились в Internet и успешно переносятся в корпоративные сети, что называется технологией intranet.

    Все устройства, используемые для подключения абонентов к глобальной сети, делятся на два класса: DTE, собственно вырабатывающие данные, и DCE, служащие для передачи данных в соответствии с требованиями интерфейса глобального канала и завершающие канал.

    Технологии глобальных сетей определяют два типа интерфейса: «пользователь-сеть» (UNI) и «сеть-сеть» (NNI). Интерфейс UNI всегда глубоко детализирован для обеспечения подключения к сети оборудования доступа от разных производителей. Интерфейс NNI может быть детализирован не так подробно, так как взаимодействие крупных сетей может обеспечиваться на индивидуальной основе.

    Глобальные компьютерные сети работают на основе технологии коммутации пакетов, кадров и ячеек. Чаще всего глобальная компьютерная сеть принадлежит телекоммуникационной компании, которая предоставляет службы своей сети в аренду. При отсутствии такой сети в нужном регионе предприятия самостоятельно создают глобальные сети, арендуя выделенные или коммутируемые каналы у телекоммуникационных или телефонных компаний.

    На арендованных каналах можно построить сеть с промежуточной коммутацией на основе какой-либо технологии глобальной сети (Х.25, frame relay, АТМ) или же соединять арендованными каналами непосредственно маршрутизаторы или мосты локальных сетей. Выбор способа использования арендованных каналов зависит от количества и топологии связей между локальными сетями.

    Глобальные сети делятся на магистральные сети и сети доступа.




Top