Кто изобрел флеш память. Флэш-память. Твердотельный накопитель. Типы флеш-памяти. Карта памяти. Окунувшись в историю

Современные технологии развиваются достаточно быстро, и то, что ещё вчера казалось верхом совершенства, сегодня нас совсем не устраивает. Это особенно относится к современным видам компьютерной памяти. Памяти постоянно не хватает или скорость носителя очень низкая, по современным меркам.

Флеш-память появилась относительно недавно, но имея много преимуществ достаточно серьёзно теснит другие виды памяти.

Флеш- память - это вид твёрдотельной энергонезависимой, перезаписываемой памяти. В отличии от жёсткого диска флешка имеет большую скорость чтения, которая может доходить до 100 Мб/с, очень маленький размер. Её можно легко транспортировать, так как она подключается через USB- порт.

Ею можно пользоваться как ОЗУ, но в отличии от ОЗУ, флеш-память хранит данные при отключенном питании, автономно.

Сегодня на рынке представлены флеш- носители объёмом от 256 мегабайт до 16 гигабайт. Но имеются носители и с большим объёмом.

К дополнительным функциям флеш- памяти можно отнести защиту от копирования, сканер отпечатков пальцев, модуль шифрования и многое другое. Так же если материнская плата поддерживает загрузку через USB- порт, то её можно использовать как загрузочное устройство.

К новым флеш- технологиям можно отнести UЗ. Этот носитель распознаётся компьютером как два диска, где на одном хранятся данные, а со второго происходит загрузка компьютера. Преимущества этой технологии очевидны, вы можете работать на любом компьютере.

Достаточно маленький размер, позволяет использовать этот вид памяти очень широко. Это и мобильные телефоны, фотоаппараты, видеокамеры, диктофоны и другое оборудование.

В описании технических характеристик любого мобильного устройства указывается тип флеш-памяти и не случайно, так как не все типы совместимы. Исходя их этого, надо выбирать достаточно распространенные на рынке флешки, чтобы не иметь проблем с каким-нибудь устройством.
Для некоторых типов флеш-карт существуют адаптеры, которые расширяют её возможности.

Существующие типы флеш-памяти

Современные флеш-карты можно разделить на шесть основных типов.

Первый и самый распространенный тип - это CompactFlash (CF) , имеется двух видов CF type I и CF type II. Имеет хорошую скорость, ёмкость и цену.
К недостаткам относят размер 42*36*4 мм. Является достаточно универсальным и используется во многих устройствах.

IBM Microdrive -дешёвая, но менее надёжная и потребляет больше обычного энергии, что и является причиной её ограниченности.

SmartMedia - тонкая и дешёвая, но не высокая защита от стирания.

Multimedia Card (MMC) - маленький размер (24x32x1,4мм), низкое энергопотребление, используется в миниатюрных устройствах. Недостаток - низкая скорость.

SecureDigital (SD) при сопастовимых размерах с Multimedia Card, имеет больший объём и скорость. Но дороже.

MemoryStick - имеет хорошую защиту информации, скорость, но не очень большую ёмкость.

Сегодня самыми распространёнными считаются CompactFlash и SD/MMC, но
кроме перечисленных карт, существуют и другие виды флеш-карт

Выбирать флеш-карту стоит исходя из своих потребностей, учитывая, что чем больше объём и скорость, тем дороже флеш- карта.

Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
Какая память бывает?
На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

Что такое flash-память и какой она бывает (NOR и NAND)?
Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором.

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM.

Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

Часть практическая

Flash
Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


СЭМ-изображения контактов, питающих чип памяти

Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


Другие структуры внутри чипов NAND памяти

DRAM
Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


«Скол» BGA-пайки

А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


Другие структуры внутри чипа DRAM-памяти

Послесловие

Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

Что такое Flash Memory?

Flash Memory/USB-накопитель или флэш-память - это миниатюрное запоминающее устройство, применимое в качестве дополнительного носителя информации и ее хранения. Устройство подключается к компьютеру или другому считывающему устройству через интерфейс USB.

USB-накопитель предназначен для многократного прочитывания записанной на нем информации в течение установленного срока эксплуатации, который обычно составляет от 10 до 100 лет. Производить же запись на флэш-память можно ограниченное количество раз (около миллиона циклов).

Флеш-память считается более надежным и компактным по сравнению с жесткими дисками (HDD), поскольку не имеет подвижных механических частей. Данное устройство довольно широко используется при производстве цифровых портативных устройств: фото и видеокамер, диктофонов и MP3-плееров, КПК и мобильных телефонов. Наряду с этим, Flash Memory используется для хранения встроенного ПО в различном оборудовании, таком как модемы, мини-АТС, сканеры, принтеры или же маршрутизаторы. Пожалуй, единственным недостатком современных USB-накопителей является их относительно малый объем.

История Flash Memory

Первая флеш-память появилась в 1984 году, ее изобрел инженер компании Toshiba Фудзио Масуокой (Fujio Masuoka), коллега которого Сёдзи Ариидзуми (Shoji Ariizumi) сравнил принцип действия данного устройства с фотовспышкой и впервые назвал его «flash». Публичная презентация Flash Memory состоялась в 1984 году на Международном семинаре по электронным устройствам, проходившем в Сан-Франциско, штат Калифорния, где данным изобретением заинтересовалась компанию Intel. Спустя четыре года ее специалисты выпустили первый флеш-процессор коммерческого типа. Крупнейшими производителями флэш-накопителей в конце 2010 года стали компания Samsung, занимающей 32% данного рынка и Toshiba - 17%.

Принцип работы USB-накопителя

Вся информация, записанная на Flash-накопитель и сохраненная в его массиве, который состоит из транзисторов с плавающим затвором, именуемыми ячейками (cell). В обычных устройствах с одноуровневыми ячейками (single-level cell), любая из них "запоминает" только один бит данных. Однако некоторые новые чипы с многоуровневыми ячейками (multi-level cell или triple-level cell) способны запомнить и больший объем информации. При этом на плавающем затворе транзистора должен использоваться различный электрический заряд.

Основные характеристики USB-накопителя

Объем представленных в настоящее время флэш-накопителей измеряется от нескольких килобайт до сотен гигабайт.

В 2005 году специалисты компаний Toshiba и SanDisk провели презентацию NAND-процессора, общий объем которого составил 1 Гб. При создании данного устройства они применили технологию многоуровневых ячеек, когда транзистор способен хранить несколько бит данных, используя различный электрический заряд на плавающем затворе.

В сентябре следующего года компания Samsung представила общественности уже 4-гигабайтный чип, разработанный на основе 40-нм технологического процесса, а в конце 2009 года, технологи Toshiba заявили о создании 64 Гб флэш-накопителя, который был запущен в массвое производство уже в начале следующего года.

Летом 2010-го состоялась презентация первого в истории человечества USB-накопителя объемом 128 Гб, состоящий из шестнадцати модулей по 8 Гб.

В апреле 2011 года компании Intel и Micron объявили о создании MLC NAND флэш-чипа на 8 Гбайт, площадью 118 мм, почти вполовину меньше аналогичных устройств, серийное производство которого стартовало в конце 2011 года.

Типы карт памяти и Flash-накопителей

Применяется он в основном в профессиональном видео- и фото-оборудовании, поскольку имеет довольно большие размеры 43х36х3,3 мм, в результате чего довольно проблематично установить слот для Compact Flash в мобильные телефоны или MP3-плееры. При этом карта считается не очень надежной, а также не обладает высокой скоростью обработки данных. Максимально допустимый объём Compact Flash в настоящее время достигает 128 Гбайт, а скорость копирования данных выросла до 120 Мбайт/с.

RS-MMC/Reduced Size Multimedia Card - карта памяти, которая в два раза по длине меньше стандартной карты MMC - 24х18х1,4 мм и весом около 6 гр. При этом сохранены все остальные характеристики и параметры обычной MMC-карты. Для использования карт RS-MMC необходимо использовать адаптер.

MMCmicro - миниатюрная карта памяти с размерами всего 14х12х1,1 мм и предназначенная для мобильных устройств. Для ее применения необходимо использовать стандартный слот MMC и специальный переходник.

Несмотря на очень схожие с ММС-картой параметры и размеры 32х24х2,1 мм, данную карту нельзя использовать со стандартным слотом ММС.

SDHC/SD High Capacity - это SD-карта памяти высокой ёмкости, известные современным пользователям как SD 1.0, SD 1.1 и SD 2.0 (SDHC). Данный устройства различаются максимально допустимым объемом данных, который можно на них разместить. Так предусмотрены ограничения по емкости в виде 4 Гб для SD и 32 Гб для SDHC. При этом SDHC-карта обратно совместима с SD. Оба варианта могут быть представлены в трех форматах физических размеров: стандартный, mini и micro.

microSD/Micro Secure Digital Card - это самое компактное по данным на 2011 год съёмное устройствами флеш-памяти, его размеры составляют 11х15х1 мм, что позволяет использовать его мобильных телефонах, коммуникаторах и т. д. Переключатель защиты от записи расположен на адаптере microSD-SD, а максимально возможный объём карты составляет 32 Гб.

Memory Stick Micro/M2 - карта памяти, формат которой конкурирует по размеру с microSD, но при этом преимущество остается за устройствами Sony.

Принципиальная схема построения устройства осталась неизменной с 1995 года, когда флэшки впервые начали производиться в промышленных масштабах. Если не углубляться в детали, USB флэш-карта состоит из трех ключевых элементов: * разъем USB -- хорошо знакомый каждому разъем, представляющий собой интерфейс между флэшкой и компьютерной системой, будь то система персонального компьютера, мультимедийного центра или даже автомагнитолы; * контроллер памяти -- очень важный элемент цепи. Осуществляет связь памяти устройства с разъемом USB и руководит передачей данных в обе стороны; * микросхема памяти -- самая дорогая и важная часть USB флэш-карты. Определяет объем хранимой на карте информации, быстроту чтения/записи данных. Что может меняться в этой схеме? Принципиально ничего, но современная индустрия предоставляет несколько вариантов такой схемы; комбинация разъемов eSATA и USB, два разъема USB.

1 -- USB-разъём; 2 -- микроконтроллер; 3 -- контрольные точки; 4 -- микросхема флэш-памяти; 5 -- кварцевый резонатор; 6 -- светодиод; 7 -- переключатель «защита от записи»; 8 -- место для дополнительной микросхемы памяти.

Принцип действия

Флэш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC; triple-level cell, TLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

Типы флeш памяти

NOR

В основе этого типа флэш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Часть электронов туннелирует сквозь слой изолятора и попадает на плавающий затвор. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флэш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

NAND

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Что такое флеш-память? | Флеш-память (на англ. Flash Memory ) или флеш-накопитель - вид твердотельной полупроводниковой энергонезависимой и перезаписываемой памяти.

Данный вид памяти может быть прочитан большое количество раз в пределах срока хранения информации, обычно от 10 до 100 лет. Но производить запись в память можно лишь ограниченное число раз (обычно в районе миллиона циклов). В основном в мире распространена флеш память, выдерживающая около ста тысяч циклов перезаписи и это гораздо больше, чем способна выдержать обычная дискета или диск CD-RW.
В отличие от накопителей на жестких дисках (HDD), флеш-память не содержит подвижных механических частей, и поэтому считается более надёжным и компактным видом носителя информации.
Так, благодаря своей компактности, относительной дешевизне и очень низкому энергопотреблению, флеш-накопители широко применяется в цифровом портативном оборудовании – в видео- и фотокамерах, в диктофонах, в MP3-плеерах, в КПК, в мобильных телефонах, смартфонах и коммуникаторах. Более того, данный вид памяти применяется для хранения встроенного ПО в различном оборудовании (модемы, мини-АТС, сканеры, принтеры, маршрутизаторы).
В последнее время широкое распространение получили флеш-накопители с USB входом (обычно говорят «флешка», USB-диск), вытеснившие дискеты и CD-диски.
В наше время основным недостатком устройств на базе флеш-накопителей, является очень высокое соотношение цена-объём, намного превышающий в сравнении с жесткими дисками в 2–5 раз. Поэтому объёмы флеш-дисков не очень велики, но в этих направлениях ведутся работы. Удешевляя технологический процесс и под действием конкуренции, уже многие фирмы заявили о выпуске SSD-дисков объёмом 512 ГБ и более. Например, в феврале 2011 года компания OCZ Technology предложила PCI-Express SSD-накопитель ёмкостью 1,2 ТБ, и позоляющий производить 10 млн. циклов на запись.
Современные SSD-накопители разрабатываются на базе многоканальных контроллеров, обеспечивающих параллельное чтение или запись сразу из нескольких микропроцессоров флеш-памяти. В следствие этого уровень производительности увеличился во столько раз, что ограничивающим фактором стала пропускная способность интерфейса SATA II.

КАК РАБОТАЕТ ФЛЕШ-ПАМЯТЬ

Флеш-накопитель сохраняет данные в массиве состоящий из транзисторов с плавающим затвором, называемые ячейками (на англ. cell). В обычных устройствах с одноуровневыми ячейками (на англ. single-level cell), любая из них может "запомнить" только один бит данных. Но некоторые более новые чипы с многоуровневыми ячейками (на англ. multi-level cell или triple-level cell) могут "запомнить" больше одного бита. В последнем случае на плавающем затворе транзистора может используется разный электрический заряд.

NOR ФЛЕШ-ПАМЯТЬ (NOR FLASH MEMORY)

В основе данного типа флеш-памяти лежит алгоритм ИЛИ-НЕ (на англ. NOR), так как в транзисторе с плавающим затвором слишком малое напряжение на затворе обозначает единицу.
Данный тип транзистора состоит из двух затворов: плавающего и управляющего. Первый затвор полностью изолирован и имеет возможность удерживать электроны до десяти лет. Ячейка также состоит из стока и истока. При подаче напряжения на управляющий затвор образуется электрическое поле и возникает так называемый туннельный эффект. Большая часть электронов переносится (туннелирует) через слой изолятора и проникает на плавающий затвор. Заряд на плавающем затворе транзистора изменяет «ширину» сток-исток и проводимость канала, что используется при чтении.
Запись и чтение ячеек очень сильно различаются в энергопотреблении: так, флеш-накопители потребляют больше тока при записи, чем при чтении (потребляется очень мало энергии).
Для удаления (стирания) данных на управляющий затвор подаётся достаточно высокое отрицательное напряжение, что приводит к обратному эффекту (электроны с плавающего затвора с помощью туннельного эффекта переходят на исток).
В NOR-архитектуре существует необходимость подводить к каждому транзистору контакт, что сильно увеличивает размеры процессора. Эта проблема решается с помощью новой NAND-архитектуры.

NAND ФЛЕШ-ПАМЯТЬ (NAND FLASH MEMORY)

В основе NAND-архитектуры лежит И-НЕ алгоритм (на англ. NAND). Принцип работы аналогичен NOR-типу, и отличается только расположением ячеек и их контактов. Уже нет необходимости подводить контакт к каждой ячейке памяти, так что стоимость и размер NAND-процессора значительно меньше. За счет этой архитектуры, запись и стирание происходят заметно быстрее. Однако эта технология не позволяет обращаться к произвольной области или ячейке, как в NOR.
Для достижения максимальной плотности и емкости, флеш-накопитель, изготовленный по технологии NAND, использует элементы с минимальными размерами. Поэтому, в отличие от NOR-накопителя допускается наличие сбойных ячеек (которые блокируются и не должны быть использованы в дальнейшем), что заметно усложняет работу с такой флеш-памятью. Более того, сегменты памяти в NAND снабжаются функцией CRC для проверки их целостности.
В настоящее время NOR и NAND-архитектуры существуют параллельно и никак не конкурируют друг с другом, поскольку у них разная область применения. NOR используется для простого хранения данных малого объема, NAND - для хранения данных большого размера.

ИСТОРИЯ ФЛЕШ-НАКОПИТЕЛЕЙ

Впервые флеш-память была изобретена в 1984 году инженером Фудзио Масуокой (Fujio Masuoka) работающего в то время в компании Toshiba. Название «flash» было придумано его коллегой Фудзио, Сёдзи Ариидзуми (Shoji Ariizumi), так как процесс стирания данных из памяти напомнил ему фотовспышку (на англ. flash). Фудзио представил свою разработку на Международном семинаре по электронным устройствам (International Electron Devices Meeting), в Сан-Франциско, в Калифорнии. Компанию Intel заинтересовало данное изобретение и через четыре года в 1988 году она выпустила первый коммерческий флеш-процессор NOR-типа.
NAND-архитектура флеш-памяти была анонсирована спустя год компанией Toshiba в 1989 году на Международной конференции построения твердотельных схем (International Solid-State Circuits Conference). У NAND-чипа была больше скорость записи и меньше площадь схемы.
В конце 2010 года, лидерами по производству флеш-накопителей являются Samsung (32% рынка) и Toshiba (17% рынка).
Стандартизацией процессоров флеш-памяти NAND-архитектуры занимается группа ONFI (NAND Flash Interface Working Group). Настоящим стандартом считается спецификация ONFI 1.0, выпущенная 28 декабря 2006 года. Стандартизацию ONFI при производстве NAND-процессоров поддерживают такие компании, как Samsung, Toshiba, Intel, Hynix и др.

ХАРАКТЕРИСТИКИ ФЛЕШ-НАКОПИТЕЛЕЙ

В настоящее время объём флеш-накопителей измеряется от килобайт до сотен гигабайт.

В 2005 году две компании Toshiba и SanDisk представили NAND-процессоры общим объёмом 1 Гб, использующие технологию многоуровневых ячеек (транзистор может хранить несколько бит данных, используя различный электрический заряд на плавающем затворе).

В сентябре 2006 года компания Samsung представила 4-гигабайтный чип, изготовленный по 40-нм технологическому процессу.

В конце 2007 года Samsung известила о создании первого в мире NAND-чипа, использующего технологию многоуровневых ячеек, выполненного уже по 30-нм технологическому процессу с ёмкостью накопителя 8 Гб.

В декабре 2009 года, компания Toshiba заявила, что 64 Гб NAND-чип уже поставляется заказчикам и массовый выпуск начался в первом квартале 2010 года.

16 июня 2010 года Toshiba представила первый в истории 128 Гб процессор, состоящий из шестнадцати модулей по 8 Гб.
Для повышения объёма флеш-памяти, в устройствах часто применяется комплексный массив, состоящий из нескольких процессоров.

В апреле 2011 года компании Intel и Micron представили MLC NAND флэш-чип емкостью 8 Гбайт, произведенного по 20-нм технологическому процессу. Самый первый 20-нм NAND процессор имеет площадь 118 мм, что на 35-40% меньше, чем у доступных в настоящее время 25-нм чипов на 8 Гбайт. Серийное производство данного чипа начнется в конце 2011 года.

ВИДЫ И ТИПЫ КАРТ ПАМЯТИ И ФЛЕШ-НАКОПИТЕЛЕЙ

CF (на англ. Compact Flash ): один из старейших стандартов типов памяти. Первая CF флеш-карта была произведена корпорацией SanDisk еще в 1994 году. Данный формат памяти очень распространён и в наше время. Чаще всего он применяется в профессиональном видео- и фото-оборудовании, так как ввиду своих больших размеров (43х36х3,3 мм) слот для Compact Flash физически проблематично установить в мобильные телефоны или MP3-плееры. Кроме того, ни одна карта не может похвастаться такими скоростями, объемами и надежностью. Максимальный объём Compact Flash уже достиг размера в 128 Гбайт, а скорость копирования данных увеличена до 120 Мбайт/с.

MMC (на англ. Multimedia Card ): карта в формате MMC имеет небольшой размер - 24х32х1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (на англ. Reduced Size Multimedia Card ): карта памяти, которая вдвое меньше по длине стандартной карты MMC. Её размеры составляют 24х18х1,4 мм, а вес - порядка 6 гр., все остальные характеристики и параметры не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.

DV-RS-MMC (на англ. Dual Voltage Reduced Size Multimedia Card ): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24х18х1,4 мм.

MMCmicro : миниатюрная карта памяти для мобильных устройств с размерами 14х12х1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать специальный переходник.

SD Card (на англ. Secure Digital Card ): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32х24х2,1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.

SDHC (на англ. SD High Capacity , SD высокой ёмкости ): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 Гб для SD и 32 Гб для SDHC. Устройства чтения SDHC обратно совместимы с SD, то есть SD-карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физических размеров (стандартный, mini и micro).

miniSD (на англ. Mini Secure Digital Card ): От стандартных карт Secure Digital отличаются меньшими размерами 21,5х20х1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.

microSD (на англ. Micro Secure Digital Card ): в 2011 году являются самыми компактными съёмными устройствами флеш-памяти (11х15х1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD. Максимальный объём карты microSDHC, выпущенной SanDisk в 2010 году, равен 32 Гб.

Memory Stick Duo : данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20х31х1,6 мм).

Memory Stick Micro (M2) : данный формат является конкурентом формата microSD (по размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card : карта используются в цифровых фотоаппаратах фирм Olympus, Fujifilm и некоторых других.




Top