Корреляционная функция сигнала. Сигналы и линейные системы

Распределения Релея и Райса характеризуют замирания сигнала не в полной мере. В частности, они не дают представление о том, как протекает процесс замирания сигнала во времени. Допустим, что процесс рассматривается в два момента времени t и t +t, где t - задержка. Тогда статистическая связь замираний дается функцией корреляции, которая определяется следующим образом.

Предположим, что рассматриваемый процесс является стационарным. Это значит, что его статистические параметры, такие как среднее, дисперсия и взаимная корреляция, не зависят от времени t . Для узкополосного процесса (2.3.37) получаем функцию корреляции в виде

Введем функции корреляции квадратурных сигналов:

Теперь выражение (2.3.61) преобразуем к виду

Для дальнейшего преобразования (2.3.63) воспользуемся тригонометрическими соотношениями.

(2.3.64)

В результате получим, что

Поскольку процесс является стационарным, функция корреляции не должна зависеть от времени. Это требование может быть выполнено, если второе и четвертое слагаемые в (2.3.65) равны нулю, что, в свою очередь, возможно, если функции корреляции квадратурных сигналов удовлетворяют следующим соотношениям:

Таким образом, функция корреляции стационарного нормального узкополосного сигнала равна

Покажем, что функция корреляции является нечетной функцией t. Для этого учтем, что

Подставим (2.3.68) во вторую формулу в (2.3.66) и находим, что

. (2.3.69)

Таким образом, функция взаимной корреляции квадратурных сигналов является нечетной. Отсюда следует важный результат, что в совпадающий момент времени квадратурные сигналы не коррелированны, то есть .

Рассмотрим теперь корреляцию комплексной амплитуды

По определению функции корреляции можно записать, что

. (2.3.71)

Функция комплексная и обладает свойством симметрии, т.е.

. (2.3.72)

Подставим (2.3.70) в (2.3.71) и учтем (2.3.62). Тогда (2.3.71) принимает вид

Если учесть (2.3.66), то эта формула существенно упрощается:

Функция корреляции (2.3.67) узкополосного сигнала и функция корреляции (2.3.74) его комплексной амплитуды взаимосвязаны. Эта связь легко выявляется из сравнения (2.3.67) и (2.3.74). В результате будем иметь



Корреляционные свойства сигнала тесно связаны с его спектральными свойствами. В частности, спектральная плотность мощности находится с помощью преобразования Фурье от корреляционной функции и равна

. (2.3.76)

Покажем, что - действительная функция, в то время как корреляционная функция является комплексной. Для этого возьмем комплексное сопряжение от выражения (2.3.76) и учтем свойство симметрии (2.3.72) функции корреляции. В результате получим, что

Сравнивая (2.3.77) с (2.3.76) имеем, что . Это доказывает, что спектр комплексной амплитуды является действительной функцией.

Далее будет показано, что спектр комплексной амплитуды сигнала, описывающего замирания в многолучевом канале, является четной действительной функцией частоты, т.е. . Тогда функция корреляции становится действительной. Чтобы это доказать, запишем функцию корреляции в виде обратного преобразования Фурье от спектральной плотности мощности в виде

. (2.3.78)

Возьмем комплексное сопряжение выражения (2.3.78) и учтем четность функции . Получим, что

Сравнивая (2.3.79) с (2.3.78) имеем, что . Это доказывает, что функция корреляции комплексной амплитуды с действительным спектром в виде четной функции является действительной функцией.

Учитывая действительность функции корреляции, из (2.3.74) находим, что

. (2.3.80)

С помощью (2.3.75) получим функцию корреляции узкополосного сигнала в виде

Теперь поставим задачу, найти в явном виде спектр и функцию корреляции, которые описывают замирания сигнала в многолучевом канале. Снова рассмотрим два момента времени t и t +t. Если за время t передатчик, приемник и переотражатели не изменяют свое местоположение и сохраняют свои параметры, то суммарный сигнал в приемнике не изменяется. Чтобы происходили замирания сигнала, необходимо взаимное перемещение передатчика, приемника и (или) переотражателей. Только в этом случае наблюдается изменение амплитуд и фаз сигналов, суммирующихся на входе приемной антенны. Чем быстрее происходит это движение, тем с большей скоростью происходят замирания сигнала и, следовательно, более широким должен быть его спектр.

Будем считать, что приемник движется со скоростью v , а передатчик остается неподвижным. Если антенна передатчика излучает гармонический сигнал некоторой частоты f , то из-за эффекта Доплера приемник регистрирует сигнал другой частоты. Разница между этими частотами называется доплеровским смещением частоты. Чтобы найти величину смещения частоты, рассмотрим рис. 2.16, где изображены передатчик, приемник, волновой вектор k плоской волны и вектор v скорости приемника.

Рис. 2.16. К определению доплеровского смещения частоты

Уравнение равномерного движения приемника запишем в виде

Тогда фаза принимаемого сигнала будет функцией времени

где q - угол между вектором скорости и волновым вектором.

Мгновенная частота определяется как производная от фазы. Поэтому, дифференцируя (2.3.83) и учитывая, что волновое число , будем иметь

. (2.3.84)

При равномерном движении приемника, как следует из (2.3.84), наблюдается смещение частоты, равное

Для примера предположим, что скорость v =72 км/ч = 20 м/с, частота передатчика f =900 МГц, а угол q=0. Длина волны l и частота f связаны через скорость света с соотношением с =fl . Отсюда имеем, что l=c /f =0.33 м. Теперь из (2.3.85) находим, что доплеровское смещение частоты f d =60 Гц.

Доплеровское смещение частоты (2.3.85) принимает как положительные, так и отрицательные значения, в зависимости от угла q между вектором скорости и волновым вектором. Величина доплеровского смещения не превышает максимального значения, равного f max =v /l. Формулу (2.3.85) удобно представить в виде

. (2.3.86)

Когда имеется много переотражателей, то естественно предположить, что они располагаются вокруг приемника равномерно, например, по окружности, как показано на рис. 2.17. Такая модель переотражателей называется моделью Кларка.

Рис. 2.17. Расположение переотражателей в моделе Кларка

Спектральная плотность мощности в случае модели Кларка определяется следующим путем. Выделим интервал частот df d вблизи частоты f d . Заключенная в этом интервале принимаемая мощность равна . Эта мощность обусловлена доплеровским смещением частоты (2.3.86). Рассеянная мощность, связанная с угловым интервалом d q, равна , где - угловая плотность рассеянной мощности. Заметим, что одинаковое доплеровское смещение f d наблюдается для переотражетелей с угловыми координатами ±q. Отсюда вытекает следующее равенство мощностей

Будем полагать, что полная рассеянная мощность равна единице и равномерно распределена в интервале .

Рис. 2.18. Доплеровским спектр Джейкса для f max =10 Гц

Чтобы определить функцию корреляции (2.3.71) комплексной амплитуды, необходимо полученное для спектральной плотности мощности выражение (2.3.90) подставить в (2.3.78). В результате получим, что

Модуль функции корреляции (2.3.91) комплексной амплитуды для двух максимальных частот Доплера f max =10 Гц (сплошная кривая) и f max =30 Гц (пунктирная кривая) показаны на рис. 2.19. Если оценить время корреляции замираний сигнала в канале по уровню 0.5, то оно равно . Это дает 24 мсек для f max =10 Гц и 8 мсек для f max =30 Гц.

Рис. 2.19. Модуль функции корреляции для f max =10 и 30 Гц (сплошная и пунктирная кривые,
соответственно).

В общем случае доплеровский спектр может отличаться от спектра Джейкса (2.3.90). Область значений Df d , в которой существенно отличается от нуля, называют допплеровским рассеянием в канале. Поскольку связана с преобразованием Фурье, то временем когерентности t coh канала является величина t coh »1/Df d , которая характеризует скорость изменения свойств канала.

При выводе (2.3.90) и (2.3.91) предполагалось, что средняя мощность рассеянного сигнала равна единице. Это следует также из (2.3.91) и (2.3.71), так как

Коэффициент корреляции равен отношению функции корреляции к средней мощности . Поэтому в данном случае выражение (2.3.91) дает также коэффициент корреляции .

Из (2.3.81) найдем функцию корреляции узкополосного сигнала равную

На практике могут представлять интерес корреляционные свойства таких случайных величин, как амплитуда А и мгновенная мощность P =А 2 . Эти величины обычно являются регистрируемыми, например, на выходе линейного или квадратичного детектора. Их корреляционные свойства определенным образом связаны с корреляционными свойствами комплексной амплитуды Z (t ).

Коэффициент корреляции мгновенной мощности связан с коэффициентом корреляции комплексной амплитуды простым соотношением вида:

. (2.3.94)

Приведем доказательство этой формулы. Исходя из определения коэффициента корреляции, можем записать, что

, (2.3.95)

где - функция корреляции мощности.

Предположим, что детерминированной компоненты сигнала нет и амплитуда А имеет релеевское распределение. Тогда <P >=<A 2 >=2σ 2 . Входящая в (2.3.95) величина . Используя релеевский закон распределения, находим, что

. (2.3.96)

Учитывая (2.3.96), найдем функцию корреляции мощности из (2.3.95) с помощью простых алгебраических преобразований. Получим, что

. (2.3.97)

Функцию корреляции мощности выразим также через квадратурные компоненты в виде

Выполняя перемножение и усреднение в правой части равенства (2.3.98), получаем слагаемые, которые представляют собой следующие моменты четвертого порядка:

Таким образом, нам необходимо вычислить моменты четвертого порядка. Учтем, что квадратурные компоненты I и Q являются гауссовскими случайными величинами с нулевым средним и одинаковой дисперсией σ 2 и воспользуемся известным правилом размыкания моментов четвертого порядка . В соответствии с ним, если имеются четыре случайные величины a , b , c , и d , то справедлива следующая формула:

Применяя это правило, вычислим моменты четвертого порядка в (2.3.99). В результате будем иметь

(2.3.101)

Если принять во внимание (2.3.96), (2.3.66) и (2.3.74), то (2.3.98) можно записать в виде

Теперь необходимо учесть, что . В результате получим следующее выражение для функции корреляции мощности:

Сравнивая полученную формулу с (2.3.97), убеждаемся в справедливости (2.3.94).

Для канальной модели Кларка мы нашли, что коэффициент корреляции определяется (2.3.91). С учетом (2.3.94), коэффициент корреляции мощности в случае модели Кларка будет равен

. (2.3.104)

Корреляционные свойства амплитуды А исследуются с привлечением значительно более сложного математического аппарата и здесь не рассматриваются. Однако следует отметить, что коэффициент корреляции амплитуды А удовлетворяет следующему приближенному равенству .

Понятие “корреляция” отражает степень сходства некоторых объектов или явлений. Применительно к сигналам корреляционная функция есть количественная мера сходства двух копий сигнала сдвинутых друг относительно друга по времени на некоторую величину t - чем больше значение корреляционной функции, тем больше похожи сигналы друг на друга.

Корреляционная функция задается следующим выражением:

R ss (t) = s(t) s(t - t)dt (1.24)

- ∞

Здесь индекс R ss означает, что вычисляется автокорреляционная функция (АКФ) корреляция сигнала s(t) с его сдвинутой копией.

Корреляционная функция (АКФ) сигнала обладает следующими свойствами:

1. Значение АКФ при t = 0 равно энергии сигнала:

R ss (0) = s(t) 2 dt. (1.25)

2. АКФ является четной и невозрастающей функцией

R ss (t) = R ss (-t), R ss (t) ≤ R ss (0). (1.26)

3. АКФ сигнала с конечной энергией при t → стримится к нулю.

4. АКФ периодического сигнала периодична с периодом, равным периоду самого сигнала.

Если АКФ показывает степень сходства между сдвинутыми копиями одного и того же сигнала, то аналогичная ей взаимная корреляционная функция (ВКФ) позволяет оценить степень подобия двух различных сигналов

R 12 (t) = s 1 (t) s 2 (t - t)dt (1.27)

Вычисление АКФ и ВКФ сигналов является одними из основных алгоритмов обработки сигналов при их приеме на фоне помех. В связи с этим понимание физического смысла “корреляции ” и знание свойств корреляционных функций различных сигналов является важным элементом образования специалиста в области передачи информации и связи.


Целью данной работы является изучение простейших радиотехнических сигналов, разложение их в ряд Фурье, создание в среде программирования Matlab соответствующих программ.

Ход работы:

1 . Создать программу построения следующих простейших радиотехнических сигналов и представить их графики:

1.1. прямоугольный импульс;

1.2. сумма синусов;

1.3. радиоимпульс с прямоугольной огибающей;

1.5. радиоимпульс с гауссовской огибающей;

1.6. последовательность импульсов типа «меандр»;

1.7. фазоманипулированная последовательность;

1.8. радиоимпульс с экспоненциальной огибающей.

2 . Создать подпрограмму разложения сигнала в ряд Фурье.

3. Определить автокорреляционную функцию Rxx(k) для сформированных моделей сигналов.

5. Оценить коэффициент корреляции исходного сигнала и его разложения в ряд Фурье.

Отчет о выполненной работе должен содержать:

Краткое описание цели работы;

Тексты *.mat программ моделирования;

Графическое представление сформированных полезных сигналов;

Выводы о проделанной работе.

Контрольные вопросы :

1. Что такое “детерминированный сигнал”? Приведите примеры.

2. Что такое “система ортогональных функций”. Как определяются коэффициенты ряда Фурье.

3. Что такое “спектр сигнала”?

4. Запишите выражения для ряда Фурье на основе тригонометрических и комплексных экспоненциальных функций.

5. Что такое “преобразование Фурье”?

6. Запишите выражения для прямого и обратного преобразований Фурье.

7. Как выглядит спектр одиночного прямоугольного импульса?

8. Как выглядит спектр функции вида sin(x)/x?

9. Как изменится форма спектра прямоугольного (гауссовского) импульса при изменении (увеличении, уменьшении) его длительности?

Литература: [Л.1], с 77-83

[Л.2], с 22-26

[Л.3], с 39-43

Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время

При снятии АКФ на один из входов перемножителя поступает сигнал , а на второй – этот же сигнал, но задержанный на время . Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном . Изменяя время задержки, можно построить АКФ сигнала.

Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

, (2.66)

а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

, (2.67)

где – наибольшее значение периода.

Найдем автокорреляционную функцию гармонического сигнала

,

где – круговая частота, – начальная фаза.

Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

.

Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

1. АКФ периодического сигнала является периодической функцией с тем же периодом.

2. АКФ периодического сигнала является четной функцией аргумента .

3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность .

4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

Следует также отметить, что интервал корреляции периодического сигнала .

А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

и .

Воспользовавшись (2.67) и проводя несложные вычисления, получим

,

где – разность начальных фаз сигналов и .

Таким образом, взаимная корреляционная функция двух рассматриваемых сигналов содержит информацию о разности начальных фаз. Это важное свойство широко используется при построении различных радиотехнических устройств, в частности, устройств синхронизации некоторых систем радиоавтоматики и других.

В заключение установим связь между АКФ непериодического сигнала и его энергетическим спектром, определение которого [см. (2.51)] было дано выше. Для этого воспользуемся (2.49) при . Тогда получим соотношение

где – функция, комплексно сопряженная с .

Положим теперь и . В соответствии с (2.45) преобразование Фурье имеет вид

С другой стороны

.

Подставляя эти выражения в (2.68), получим

.

Но в соответствие с (2.51) есть энергетический спектр. Тогда окончательно

. (2.69)

Применяя к прямое преобразование Фурье, приходим к соотношению

. (2.70)

Таким образом, АКФ и энергетический спектр сигнала связаны парой преобразований Фурье.

Так как и – вещественные и четные функции, выражения (2.69) и (2.70) можно записать соответственно в виде

, (2.71)

. (2.72)

Рассмотренный корреляционно-спектральный анализ позволяет дать еще одну трактовку эффективной ширины спектра. Если известен энергетический спектр, то эффективная ширина спектра определяется так:

. (2.73)

Иными словами представляет собой сторону прямоугольника по площади равного площади под кривой одностороннего спектра, вторая сторона которого равна (рис.2.13). Очевидно, произведение эффективной ширины энергетического спектра на величину интервала корреляции есть величина постоянная

.

Таким образом, и в этом случае мы сталкиваемся с проявлением принципа неопределенности: чем больше интервал корреляции, тем меньше ширина энергетического спектра, и наоборот.

Контрольные вопросы к главе 2

1. Что такое система базисных тригонометрических функций?

2. Как можно записать тригонометрический ряд Фурье?

3. Дайте определение амплитудного и фазового спектра периодического сигнала.

4. Какой характер носит спектр последовательности прямоугольных импульсов?

5. Чем отличается спектр одиночного импульса от спектра периодической последовательности импульсов?

6. Запишите прямое и обратное преобразование Фурье.

7. Как найти эффективную длительность и эффективную ширину спектра прямоугольного сигнала?

8. Что представляет собой спектр сигнала в виде дельта-функции?

9. Дайте определение автокорреляционной функции детерминированного сигнала.

10. Что такое взаимная корреляционная функция двух сигналов?

11. Как найти коэффициент взаимной корреляции?

12. Какими свойствами обладает автокорреляционная функция периодического сигнала?

Корреляция – математическая операция, схожа со свёрткой, позволяет получить из двух сигналов третий. Бывает: автокорреляция (автокорреляционная функция), взаимная корреляция (взаимнокорреляционная функция, кросскорреляционная функция). Пример:

[Взаимная корреляционная функция]

[Автокорреляционная функция]

Корреляция - это техника обнаружения заранее известных сигналов на фоне шумов, ещё называют оптимальной фильтрацией. Хотя корреляция очень похожа на свёртку, но вычисляются они по-разному. Области применения их также различные (c(t)=a(t)*b(t) - свертка двух функций, d(t)=a(t)*b(-t) - взаимная корреляция).

Корреляция – это та же свёртка, только один из сигналов инвертируется слева направо. Автокорреляция (автокорреляционная функция) характеризует степень связи между сигналом и его сдвинутой на τ копией. Взаимнокорреляционная функция характеризует степень связи между 2-мя разными сигналами.

Свойства автокорреляционной функции:

  • 1) R(τ)=R(-τ). Функция R(τ) – является чётной.
  • 2) Если х(t) – синусоидальная функция времени, то её автокорреляционная функция – косинусоидальная той же частоты. Информация о начальной фазе теряется. Если x(t)=A*sin(ωt+φ), то R(τ)=A 2 /2 * cos(ωτ).
  • 3) Функция автокорреляции и спектра мощности связаны преобразованием Фурье.
  • 4) Если х(t) – любая периодическая функция, то R(τ) для неё может быть представлена в виде суммы автокорреляционных функций от постоянной составляющей и от синусоидально изменяющейся составляющей.
  • 5) Функция R(τ) не несёт никакой информации о начальных фазах гармонических составляющих сигнала.
  • 6) Для случайной функции времени R(τ) быстро уменьшается с увеличением τ. Интервал времени, после которого R(τ) становится равным 0 называется интервалом автокорреляции.
  • 7) Заданной x(t) соответствует вполне определённое R(τ), но для одной и той же R(τ) могут соответствовать различные функции x(t)

Исходный сигнал с шумами:

Автокорреляционная функция исходного сигнала:

Свойства взаимной корреляционной функции (ВКФ):

  • 1) ВКФ не является ни чётной ни нечётной функ¬цией, т.е. R ху (τ) не равно R ху (-τ).
  • 2) ВКФ остаётся неизменной при перемене чередования функций и изменений знака аргумента, т.е. R ху (τ)=R ху (-τ).
  • 3) Если случайные функции x(t) и y(t) не содержат постоянных составляющих и создаются независимыми источниками, то для них R ху (τ) стремится к 0. Такие функции называются некоррелированными.

Исходный сигнал с шумами:

Меандр той же частоты:

Корреляция исходного сигнала и меандра:



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.

Смысл спектрального анализа сигналов заключается в изучении того, как сигнал может быть представлен в виде суммы (или интеграла) простых гармонических колебаний и как форма сигнала определяет структуру распределения по частотам амплитуд и фаз этих колебаний. В противоположность этому задачей корреляционного анализа сигналов является определение меры степени сходства и различия сигналов или сдвинутых по времени копий одного сигнала. Введение меры открывает пути к проведению количественных измерений степени схожести сигналов. Будет показано, что существует определенная взаимосвязь между спектральными и корреляционными характеристиками сигналов.

3.1 Автокорреляционная функция (акф)

Автокорреляционная функция сигнала с конечной энергией – это значение интеграла от произведения двух копий этого сигнала, сдвинутых относительно друг друга на время τ, рассматриваемое в функции этого временного сдвига τ:

Если сигнал определен на конечном интервале времени , то его АКФ находится как:

,

где
- интервал перекрытия сдвинутых копий сигнала.

Считается, что чем больше значение автокорреляционной функции
при данном значении, тем в большей степени две копии сигнала, сдвинутые на промежуток времени, похожи друг на друга. Поэтому корреляционная функция
и является мерой сходства для сдвинутых копий сигнала.

Вводимая таким образом мера сходства для сигналов, имеющих форму случайных колебаний вокруг нулевого значения, обладает следующими характерными свойствами.

Если сдвинутые копии сигнала колеблются примерно в такт друг к другу, то это является признаком их схожести и АКФ принимает большие положительные значения (большая положительная корреляция). Если копии колеблются почти в противофазе, АКФ принимает большие отрицательные значения (антисходство копий сигнала, большая отрицательная корреляция).

Максимум АКФ достигается при совпадении копий, то есть при отсутствии сдвига. Нулевые значения АКФ достигаются при сдвигах, при которых не заметно ни сходства, ни антисходства копий сигнала (нулевая корреляция, отсутствие корреляции).

На рис.3.1 изображен фрагмент реализации некоторого сигнала на интервале времени от 0 до 1 с. Сигнал случайным образом колеблется вокруг нулевого значения. Поскольку интервал существования сигнала конечен, то конечна и его энергия. Его АКФ можно вычислить в соответствии с уравнением:

.

Автокорреляционная функция сигнала, вычисленная вMathCad в соответствии с этим уравнением, представлена на рис. 3.2. Корреляционная функция показывает не только то, что сигнал похож сам на себя (сдвиг τ=0), но и то, что некоторой схожестью обладают и копии сигнала, сдвинутые друг относительно друга приблизительно на 0.063 с (боковой максимум автокорреляционной функции). В противоположность этому копии сигнала сдвинутые на 0.032 с, должны быть антипохожи дуг на друга, то есть быть в некотором смысле противоположными друг другу.

На рис.33 показаны пары этих двух копий. По рисунку можно проследить, что понимается под похожестью и антипохожестью копий сигнала.

Корреляционная функция обладает следующими свойствами:

1. При τ = 0 автокорреляционная функция принимает наибольшее значение, равное энергии сигнала

2. Автокорреляционная функция является четной функцией временного сдвига
.

3. С ростом τ автокорреляционная функция убывает до нуля

4. Если сигнал не содержит разрывов типа δ - функций, то
- непрерывная функция.

5. Если сигнал является электрическим напряжением, то корреляционная функция имеет размерность
.

Для периодических сигналов в определении автокорреляционной функции тот же самый интеграл делят еще на период повторения сигнала:

.

Так введенная корреляционная функция отличается следующими свойствами:


Для примера вычислим корреляционную функцию гармонического колебания :

Используя ряд тригонометрических преобразований, получим окончательно:

Таким образом, автокорреляционная функция гармонического колебания является косинусоидой с тем же периодом изменения, что и сам сигнал. При сдвигах, кратных периоду колебания, гармоника преобразуется в себя и АКФ принимает наибольшие значения, равные половине квадрата амплитуды. Сдвиги по времени, кратные половине периода колебания, равносильны смещению фазы на угол
, при этом меняется знак колебаний, а АКФ принимает минимальное значение, отрицательное и равное половине квадрата амплитуды. Сдвиги, кратные четверти периода, переводят, например, синусоидальное колебание в косинусоидальное и наоборот. При этом АКФ обращается в нуль. Такие сигналы, находящиеся в квадратуре друг относительно друга, с точки зрения автокорреляционной функции оказываются совершенно не похожими друг на друга.

Важным является то, что в выражение для корреляционной функции сигнала не вошла его начальная фаза. Информация о фазе потерялась. Это означает, что по корреляционной функции сигнала нельзя восстановить сам сигнал. Отображение
в противоположность отображению
не является взаимно однозначным.

Если под механизмом генерирования сигналов понимать некоего демиурга, создающего сигнал по выбранной им корреляционной функции, то он смог бы создать целую совокупность сигналов (ансамбль сигналов), имеющих действительно одну и ту же корреляционную функцию, но отличающихся друг от друга фазовыми соотношениями.

    актом проявления сигналом своей свободной воли, независимой от воли создателя (возникновение отдельных реализаций некоторого случайного процесса),

    результатом постороннего насилия над сигналом (введение в сигнал измерительной информации, получаемой при проведении измерений какой либо физической величины).

Аналогичным образом обстоит дело с любым периодическим сигналом. Если периодический сигнал с основным периодом Т имеет амплитудный спектр
и фазовый спектр
, то корреляционная функция сигнала принимает следующий вид:

.

Уже в этих примерах проявляется некоторая связь между корреляционной функцией и спектральными свойствами сигнала. Подробнее об этих соотношениях речь пойдет в дальнейшем.




Top