Контроллер заряда акб от солнечных батарей. Контроллеры для солнечных батарей, собранные самостоятельно, имеют свойства. контроллер заряда на солнечную батарею своими руками

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея — накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда .

Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 — устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 — приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему . Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Основной сложностью использования солнечной энергии в быту является ее накопление. вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

Какой выбирать

Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.

Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

  • Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ - простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
  • MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

Видео, контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ - такая перспектива уже не кажется раумной. Собрать качественный MPPT - контроллер в домашних условиях - вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

Дополнения к видео: схема контроллера, расположение деталей на печатной плате:

Схема контроллера солнечной батареи LAY печатной платы Расположение деталей на плате

Комментарии:

Похожие записи

Ветряк для частного дома - игрушка или реальная альтернатива Бестопливный генератор - способ заработать на безграмотности

Если вы задумывались над альтернативным способом получения энергии и решили устанавливать солнечные батареи, то наверняка хотите сэкономить. Одной из возможностей экономии — сделать контроллер заряда своими руками . При установке солнечных генераторов — панелей, требуется много дополнительного оборудования: контроллеры заряда, аккумуляторы, для перевода тока под технические стандарты.

Рассмотрим изготовление контроллера заряда солнечной батареи своими руками .

Это устройство контролирующее уровень зарядки свинцовых аккумуляторов, не допускающее их полной разрядки и перезарядки. Если аккумулятор начнет разряжаться в аварийном режиме, аппарат снизит нагрузку и не допустит полной разрядки.

Стоит отметить, что самостоятельно изготовленный контроллер не сравниться по качеству и функционалу с промышленным, но он будет вполне достаточен для работы элетросети. В продаже попадаются изделия, изготовленные в подвальных условиях, которые имеют очень низкий уровень надежности. Если у вас не хватает средств на дорогостоящий агрегат, лучше собрать его самостоятельно.

Контроллер заряда акб от солнечных батарей изготовленный самостоятельно

Даже самодельный продукт должен соответствовать следующим условиям:

  • 1,2P< U x I , где P – общая мощность всех используемых источников напряжения, I – ток прибора на выходе, U – вольтаж системы при разряженных батареях
  • Максимально разрешенное входное напряжение должно равняться общему напряжению всех батарей без нагрузки.

На изображении ниже вы увидите схему такого электрооборудования. Для того чтобы собрать его потребуются небольшие познания в электроники и немного терпения. Конструкция немного доработана и теперь вместо диода установлен полевой транзистор, регулирующийся компаратором.
Такой контролер заряда будет достаточен для использования в сетях не высокой мощности, с использованием только . Отличается простотой изготовления и дешевизной материалов.

Контроллер заряда для солнечных батарей работает по простому принципу: когда напряжение на накопителе достигает указанного значения, он прекращает зарядку, дальше идет только капельный заряд. В случае падения напряжения показателя ниже установленного порога подача тока на аккумулятор возобновляется. Использование аккумуляторов отключается контролером когда в них заряд менее 11 V. Благодаря работе такого регулятора акб самопроизвольно не разрядится во время отсутствия солнца.



Основные характеристики схемы контролера заряда :

  • Напряжение заряда V=13,8V (настраивается), измеряется при наличии тока заряда;
  • Отключение нагрузки происходит когда Vbat мене 11V (настраивается);
  • Включение нагрузки когда Vbat=12,5V;
  • Температурная компенсация режима заряда;
  • Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;
  • Падение напряжения на ключах менее 20mV при заряде током 0,5А.

Усовершенствованный контроллер заряда солнечной батареи

Если вы уверены в своих познаниях электронного оборудования, можно попробовать собрать более сложную схему контроллера заряда. Она более надежна и способна работать как от солнечных батарей, так и от ветрогенератора, который поможет вам получать свет по вечерам.

Выше представлена усовершенствованная схема котроллера заряда своими руками. Для изменения пороговых значений применяются подстроечные резисторы, с помощью которых вы будете регулировать параметры работы. Ток, поступающий от источника коммутируется реле. Само реле управляется ключом полевых транзисторов.

Все схемы контроллера заряда проходили проверку на практике и отлично зарекомендовали себя на протяжении нескольких лет.

Для дачи и прочих объектов, где не требуется большое потребление ресурсов, нет смысла затрачиваться на дорогостоящие элементы. Если вы имеете необходимые знания, можно доработать предложенные конструкции или добавить необходимый функционал.

Так вы можете сделать своими руками контроллер заряда при использовании устройств альтернативной энергии. Не стоит отчаиваться если первый блин вышел комом. Ведь никто не застрахован от ошибок. Немного терпения, старания и экспериментов доведут дело до конца. Зато работающее электроснабжение будет отличным поводом для гордости.

Одним из важнейших компонентов домашней солнечной электростанции является контроллер заряда аккумуляторов. Именно это устройство следит за процессом заряда/разряда аккумуляторов, поддерживая оптимальный режим их работы. Существует множество схем контроллеров для солнечных батарей – от самых простых, выполненных порою кустарным способом, до очень сложных, с применением микропроцессоров. Причем контроллеры заряда для солнечных батарей, сделанные своими руками, частенько работают лучше аналогичных промышленных устройств такого же типа.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

Контроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Три принципа построения контроллеров заряда

По принципу действия различают три типа солнечных контроллеров.
Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.


Вольт-амперная характеристика солнечного модуля

Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.


Третий тип – это контроллеры MPPT , то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% - 30% больше энергии, чем другие аппараты.


Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% - 95%.

Простейший самодельный контроллер

При самостоятельном изготовлении любого контроллера необходимо обязательно соблюдать определенные условия. Во-первых, максимальное напряжение на входе должно быть равным напряжению АКБ без нагрузки. Во-вторых, должно быть выдержано соотношение: 1,2P


Этот аппарат предназначен для работы в составе солнечной электростанции малой мощности. Принцип работы контроллера предельно прост. Когда напряжение на клеммах аккумуляторов достигнет заданного значения, заряд прекращается. В дальнейшем производится только так называемый капельный заряд.


Контроллер, смонтированный на печатной плате

При падении напряжения ниже установленного уровня подача энергии на аккумуляторы возобновляется. Если при работе на нагрузку в отсутствии заряда напряжение АКБ будет ниже 11 вольт, контроллер отключит нагрузку. Тем самым исключается разряд аккумуляторов в период отсутствия солнца.

Аналоговый контроллер для маломощных гелиевых систем

Аналоговые устройства используются, в основном, в гелиевых системах, имеющих небольшую мощность. В мощных системах целесообразно применять цифровые последовательные аппараты типа MPPT. Эти контроллеры прерывают зарядный ток, когда аккумулятор будет полностью заряжен. В предлагаемой схеме аналогового контролера используется параллельное подключение. При таком подключении солнечный модуль всегда соединен с аккумулятором через специальный диод. Когда напряжение на аккумуляторе достигнет заданного значения, контроллер параллельно солнечному модулю включает цепь нагрузочного сопротивления, которое принимает на себя избыток энергии от модуля.

Это устройство было разработано и собрано под конкретную систему, состоящую из солнечной панели с 36 ячейками, с выходным напряжением холостого хода 18 вольт и с током короткого замыкания до одного ампера. Емкость аккумулятора до 50 ампер-часов, при номинальном напряжении 12 вольт. Перед тем, как включить собранный аппарат в рабочую конфигурацию системы, необходимо произвести его настройку. Для быстрой настройки нужно взять предварительно заряженный аккумулятор. Солнечную батарею с соблюдением полярности нужно подключить к клеммам PV по схеме, а аккумулятор – к клеммам ВАТ. К клеммам аккумулятора необходимо также подключить цифровой вольтметр.


Теперь для получения максимальной отдачи от солнечной батареи, нужно сориентировать ее на солнце. После этого медленно поворачивать винт двадцатиоборотного переменного резистора номиналом в 100 кОм. Вращение винта производится до тех пор, пока светодиод не начнет мигать. После того, как начнется мигание, винт следует продолжать медленно поворачивать до тех пор, пока вольтметр не покажет значение напряжения на клеммах аккумулятора, равное желаемому. На этом настройка устройства завершена.

В процессе эксплуатации системы при достижении напряжением на клеммах аккумулятора предельного значения светодиод начинает выдавать краткие световые импульсы с длительными промежутками. При продолжении заряда аккумулятора длительность световых импульсов увеличивается, а интервал между ними, наоборот, сокращается.

Разумеется, при наличии определенных знаний и навыков можно собрать и более сложное устройство, например, MPPT, но если речь заходит о покупке дорогостоящего оборудования для домашней электростанции, то, вероятно, есть смысл все-таки купить промышленный аппарат, на который распространяется к тому же и гарантия изготовителя. И не подвергать аккумуляторные батареи риску повреждения.

Переход на альтернативные источники энергии продолжается уже довольно много лет, охватывая разные сферы. Несмотря на привлекательность концепции получения бесплатной энергии, на практике ее реализовать непросто. Возникают и технические, и финансовые сложности. Тем не менее в случае небольших по объему проектов альтернативное энергоснабжение себя оправдывает. Например, контроллер для позволяет использовать бесплатное питание для электроприборов даже в домашних условиях. Данный компонент регулирует работу аккумулятора, позволяя оптимально расходовать генерируемый заряд.

Какие параметры контроллера нужно учитывать?

В первую очередь следует исходить из суммарной мощности и входного напряжения системы, под которую подбирается контроллер. То есть именно мощность батареи или комплекса элементов питания не должна превышать произведения напряжения системы на величину выходного тока управляющего устройства. Причем контроллер для подбирается из расчета напряжения в разряженном аккумуляторе. К тому же следует предусмотреть и 20-процентный запас для напряжения на случай повышенной солнечной активности.

Также контроллер рассчитывается в показателе соответствия входному напряжению. Эта величина строго регламентируется на те же случаи аномальной активности излучения. На рынке контроллер для солнечной батареи представлен в разных видах, каждый из которых предполагает свою специфику оценки описанных характеристик.

Особенности выбора контроллеров PWM

Выбор данного типа управляющего устройства отличается простым подходом - будущему пользователю нужно определиться только с оптимальными показателями тока короткого замыкания в используемом модуле. Также следует предусматривать некоторый запас. Например, если ток солнечного генератора мощностью 100 Вт стабильно функционирует при показателе в 6,7 А, то контроллер должен располагать номинальным значением тока порядка 7,5 А.

Иногда берется в расчет и ток разряда. Особенно его важно учитывать при эксплуатации контроллеров с функцией управления нагрузкой. В данном случае выбор контроллера для солнечной батареи делается с таким расчетом, чтобы ток разряда не превышал аналогичное номинальное значение в управляющем устройстве.

Особенности выбора контроллеров MPPT

Данный тип контроллеров подбирается по критерию мощности. Так, если максимальный ток устройства составляет 50 А и система оптимально функционирует с напряжением 48 В, то пиковая мощность контроллера составит около 2900 Вт с учетом добавки страхующего потенциала. И здесь важен еще один аспект. Дело в том, что напряжение солнечных генераторов может понижаться в случаях их разряда. Соответственно, и мощность может упасть на существенную долю процента. Но это не значит, что можно делать скидку и на показатели самого контроллера - его мощностный потенциал должен охватывать именно предельные значения.

Кроме того, в вопросе о том, как выбрать контроллер для солнечных батарей типа MPPT, следует учитывать и особенности излучаемой радиации. На поверхности земли интенсивность солнечного света добавляет еще 20% к мощности аккумуляторной инфраструктуры. Такие явления нельзя назвать правилом, но даже как случайность они должны предусматриваться в расчете мощности контроллера.

Как сделать котроллер самостоятельно?

Типовой вариант самодельного контроллера предполагает использование скромного набора элементов. Среди них будет транзистор, выдерживающий ток до 49 А, реле-регулятор от автомобиля, резистор на 120 кОм и диодный элемент. Далее реле подключается к аккумулятору, а затем провод по резистору проходит к затвору транзистора. В процессе работы реле-регулятора плюсовой сигнал должен отпирать затвор, и ток от модуля солнечного света будет проходить через лапки транзистора в аккумулятор.

Если делается универсальный контроллер для с расчетом на исключение самопроизвольного потребления накапливаемой энергии, то интеграция в систему диода будет обязательной. В ночное время он создаст для подсветку, исключая дополнительное потребление энергии модулем.

Можно ли обойтись без контроллера для солнечной батареи?

Перед тем как дать ответ на этот вопрос, нужно вспомнить, какова вообще функция контроллера в составе солнечного модуля. С его помощью владелец может автономно управлять процессом заряда аккумуляторного блока за счет энергии света. Если контроллера не будет, то процесс наполнения энергией может происходить вплоть до момента выкипания электролита. То есть совсем без средства управления взаимодействием солнечной панели и аккумулятора обойтись нельзя. Другое дело, что контроллер для солнечной батареи может быть заменен вольтметром. При обнаружении пиковых значений заряда и напряжения пользователь самостоятельно может остановить процесс путем отключения блока АКБ. Такой подход, конечно, неудобен по сравнению с автоматическим контролем, но в случае редкого использования системы и он себя может оправдать.

Заключение

Изготовлением солнечных контроллеров и других комплектующих для подобного рода модулей сегодня занимаются многие компании. Этот сегмент уже не рассматривается обособленным и специфическим. На рынке такие компоненты можно приобрести за 10-15 тыс. рублей, причем хорошего качества. Конечно, самодельный контроллер для солнечной батареи с применением бюджетных резисторов и деталей автомобильной электротехники обойдется в разы дешевле, но он едва ли сможет гарантировать должный уровень надежности. А момент стабильности работы и безопасности особенно важен в эксплуатации солнечных панелей, не говоря об аккумуляторе. В случае успешного оснащения солнечного модуля качественным контроллером владелец сможет рассчитывать на автоматическое накопление электроэнергии без необходимости вмешательства в процесс генерации.




Top