Компрессия. Для чего нужна компрессия в музыке. Компрессия в работе со звуком

Многие начинающие музыканты в том числе и гитаристы, которые лишь недавно начали увлекаться , довольствуются некоторым базовым музыкальным оборудованием и программным обеспечением, и чаще всего даже не знают для чего нужен компрессор в музыке и что это вообще такое.

Для них наиболее важно не то, как будет звучать их запись в конечном итоге, а то, как качественно и красиво они смогут сыграть на своем любимом музыкальном инструменте. А такой подход к записи изначально в корне не верный и чреват в пустую потраченным временем.

С развитием мастерства у музыкантов возникает желание сделать звук своей записи более качественным, интересным и приятным на слух. Часть этой сложной задачи сможет решить компрессия звука. К счастью, на сегодняшний день существует множество простых путей достижения этой цели, так как дорогостоящее для начинающих артистов музыкальное оборудование может с легкостью заменить компьютерная программа.

Что такое компрессор?

Компрессор – прибор динамической обработки звука. Существует множество видов компрессоров с различными функциями, но основная суть их работы заключается в том, что они анализируют входной сигнал и в зависимости от настроек ослабляют или усиливать его на определенную величину.

Это нужно для того, чтобы выровнять громкость звучания композиции или выделения отдельных партий миксе. Например, при записи вокала может возникнуть ситуация, когда вокалист поет с перепадами в динамике голоса, так что слова теряются в общем звучании. Чтобы этого избежать, применяют компрессию и «вытаскивают» пропадающие участки на нужный уровень.

Принцип работы компрессора

Компрессор может быть отрегулирован по нескольким параметрам. Самые основные – величина компрессии и «точка перегиба»: в первом случае контролируется степень заглушения или усиления сигнала на выходе, а во втором случае – устанавливается уровень сигнала, после которого он не подвергается компрессии.

Также важным фактором динамической обработки является время атаки и время восстановления. Время атаки – величина, указывающая на скорость реагирования компрессора на превышение уровня входного сигнала, а время восстановления показывает на те же параметры, но с точностью наоборот. Время атаки и время восстановления особенно важно выставить на нужный уровень при записи ударных, иначе во время удара бас-бочки будут заглушены все верхние частоты и тихие звуки.

Такую задачу можно решить увеличением времени атаки – так компрессор «пропустит» момент удара бас-бочки и не заглушит высокий диапазон. Альтернативой для решения этой проблемы возможно применение устройств с другим алгоритмом компрессии. Они работают не по принципу точки перегиба, а изменяют все сигналы, но в зависимости от их уровня – чем слабее сигнал, тем меньше он подвержен изменению.

Такие компрессоры дают на выходе более мягкий и приятный звук, к тому же они просты в управлении, так как у них есть только один контролируемый параметр – уровень компрессии. Из-за того, что компрессор не в состоянии отличить шум от полезного сигнала, он может увеличивать громкость помех во время пауз в записи. Для предотвращения такой проблемы применяются экспандеры или простые гейты. Они заглушают шумы в моменты, когда происходят паузы в партии.

Компрессор в музыке

Компрессоры имеют достаточно сложную конструкцию в зависимости от количества параметров, которые они регулируют. В недорогих компрессорах часто используется автоматическая регулировка времени атаки и восстановления, что, несомненно, облегчает жизнь начинающих музыкантов и дает возможность полностью погрузиться в музыку.

Еще более легкий способ – использовать программы-компрессоры, которые очень часто встроены в секвенсоры и аудиоредакторы и имеют множество разнообразных пресетов и эмуляций. Сейчас компрессоры используются повсеместно, будь то концерт или , и каждый использует его по своим музыкальным предпочтениям.

Основы.

Сжатие (англ.). Применительно к звуковому эффекту: Compressor это устройство, предназначеное для сжатия динамического диапазона. Конструктивно это усилитель с автоматической регулировкой уровня. Выражаясь простым языком, этот эффект уменьшает разницу между тихими и громкими звуками. Кроме того, при определённых настройках параметров Attack и Release, компрессия придаёт инструментам некоторую “перкуссивность”, давая звуку больше атаки и, как бы противоречиво это ни звучало - динамики. Именно благодаря применению компрессии при сведении, современные записи звучат так мощно и гладко.

Основные параметры:

Threshold - порог включения компрессии. Сигнал ниже этого порога не подвергается обработке.

Ratio - соотношение входного сигнала к выходному. Например, значение 5:1 означает, что при изменении входного сигнала на 5dB, на выходе мы получим разницу в 1dB.

Attack - время в миллисекундах, которое эффект “ожидает” прежде чем начать сжимать сигнал.

Release - время восстановления чувствительности эффекта.

Gain - регулятор уровня выходного сигнала.

Шкала индикатора GR (Gain Reduction) показывает уровень ослабления сигнала в результате действия компрессии.

Практика.

В качестве материала я взял несколько шумовых импульсов - для бОльшей наглядности:

Теперь, применим эффект с “базовыми” параметрами Ratio 5:1, Attack 40 mS, Release 300 mS, Threshold -30 dB:

Здесь я пометил, какая настройка за что отвечает. Обратите внимание на действие параметра Release: релиз в 300 миллисекунд не позволяет восстановить чувствительность, так как расстояние между первыми тремя импульсами меньше этого значения, в результате чего атака второго и третьего сэмплов слегка ослаблена. Компрессор успевает восстановиться только во время большой паузы, перед последним звуком. Чтобы добиться одинаковой амплитуды на атаке всех сэмплов, достаточно уменьшить время восстановления (при прочих равных параметрах):

Параметром Attack мы задаём ширину импульса на атаке сигнала, что позволяет получить разный характер звука: высокочастотный щелчок при малых значениях (5-50мс) или низкий “пинок” при значениях 60-70мс и более:

Значение 0мс не выделяет атаку, сжатие происходит мгновенно (Компрессор работает в режиме Limiter* ):

Параметр Threshold -30dB я выбрал для лучшей визуализации. Сигнал обработаный таким образом, сильно ослаблен - фактически только атака и остаётся. С меньшим параметром Threshold мы получим меньшее ослабление сигнала и менее выраженую компрессию (это особенно заметно на последнем, затухающем сэмпле):

Реальная практика.

Теперь, когда известно как на звук влияют определённые настройки, можно применить эффект к реальному музыкальному материалу. Хоть я и использую компрессор практически на каждом треке, бездумно применять его везде я бы не советовал. Здесь не существует определённых правил, всё зависит от конкретной партии и ожидаемого результата. Например, если вы имеете дорожку рабочего барабана (Snare) или бочки (Kick), “набитую” одним сэмплом, особого смысла в компрессии нет, поскольку сэмплы уже имеют одинаковую динамику. С другой стороны, если вы хотите придать этим партиям более “пробивное” звучание, имеет смысл применить компрессию с параметром Attack 10-40 mS, быстрым Release и ослаблением (Gain Reduction) порядка 6-10dB. Это придаст звуку “ту самую” перкуссионность.

Аналогично с Distortion электрогитарами и некоторыми синтезаторными звуками - эти инструменты, как правило, уже имеют ровную динамику, но я не исключаю, например, использование лимитера для ограничения пиков или компрессора со стандартными установками, чтобы подчеркнуть атаку… Повторюсь, всё зависит от исходного материала и конечной цели.

В заключении - некоторые мои “стандартные” настройки для различных инструментов. Эти установки могут стать отправной точкой в поиске нужного звучания:

Бочка : Ratio 10:1, Attack 10-100 mS, Release 1 mS, Threshold для ослабления примерно 6-10 dB.

Рабочий барабан : Ratio 5:1, Attack 10-40 mS, Release 50 mS, Threshold для ослабления примерно 6-10 dB.

Хай-Хэт : Ratio 10:1, Attack 20 mS, Release 1 mS, Threshold для ослабления примерно 6-10 dB.

Надголовные микрофоны (Overhead) : Ratio 5:1, Attack 2-5 mS, Release 1-50 mS, Threshold для ослабления примерно 6-10 dB.

Мастер трек (шина) : лимитер. Ratio 10:1, Attack 0 mS, Release 10-50 mS, Threshold для ослабления примерно 3-10 dB.

Перкуссия, Loops : Ratio 10:1, Attack 10-20 mS, Release 50 mS, Threshold для ослабления примерно 3-5 dB.

"Чистые тоны субъективно воспринимаются громкими или тихими в зависимости от силы (интенсивности) звука. Сила звука (обозначаемая обычно символом I ) связана со звуковым давлением квадратичной зависимостью.

Это значит, что изменение силы звука пропорционально соответствующему изменению величины звукового давления, возведенному в квадрат ( I пропорционально р2). Так, рост звукового давления в 2 раза влечет увеличение силы звука в 4 раза, при росте звукового давления в 3 раза сила звука возрастает в 9 раз и т.д. Сила звука определяется потоком той звуковой энергии, которая при распространении в пространстве проходит ежесекундно через каждый квадратный метр плоскости, перпендикулярной к направлению распространения волны. Измеряют силу звука в Вт/м.

Человеческий слух по восприятию звуков разной силы ограничен. Человек начинает слышать при силе звука, превышающей или равной некоторой величине, называемой порогом слышимости (или слуховым порогом). Более слабые звуки слухового ощущения не вызывают. При увеличении силы звука достигается нормальная слышимость, а затем при еще больших амплитудах звуковых колебаний к воспринимаемому звуку добавляется осязаемое ощущение давления, и, наконец, при дальнейшем росте силы звука раздражение органа слуха становится болезненным.

Так называемый болевой порог ограничивает область Слышимости при больших уровнях интенсивности. Чувствительность человеческого уха зависит от частоты приходящего сигнала, поэтому уровень порога слышимости для разных частот различный.


При смешении из области оптимальной слышимости в сторону низких и высоких звуковых частот чувствительность человеческого уха резко падает. Это видно по поведению кривой порога слышимости вблизи краев диапазона слышимости. А вот болевой порог от частоты зависит слабо.

Звуковое давление, вызывающее у человека болевое ощущение, приблизительно равно 20 Па. На средних частотах звуковое давление, соответствующее болевому порогу, превышает порог слышимости примерно в миллион раз. Поскольку поток энергии звуковой волны с величиной звукового давления связан квадратичной зависимостью, то по силе звука у порога слышимости и болевого отличается в 1011 раз. Это отношение и определяет динамический диапазон слуха. При оценке динамического диапазона применяются специальные единицы измерения, не зависящие от способа вычисления.

Согласно психофизическому закону Вебера-Фехнера слух одинаково оценивает равные относительные изменения силы звука. Другими словами, изменение громкости кажется человеку одинаковым, если сила звука изменилась в одно и то же число раз (или на один и тот же процент относительно своей первоначальной величины), при этом восприятие не зависит от абсолютного уровня силы звука. Так двукратный рост уровня тихого и громкого звука воспринимаются одинаково, хотя абсолютные приращения звукового давления существенно различны.

Минимальное изменение интенсивности звука, воспринимаемое нашим ухом, соответствует изменению звукового давления примерно в 1,12 раза (т.е. на 12%), что соответствует изменению силы звука в 1,25 раза (т.е. на 25%).

Итак, наряду со способностью различать звуки, имеющие уровни, отличающиеся в сотни и тысячи миллионов раз, человеческое ухо хорошо реагирует и на очень малые изменения уровней. Это объясняется логарифмическим законом восприятия. Наши ощущения изменений громкости пропорциональны не изменениям силы звука, а логарифму этих величин.

L=C lg I 2 / I 1,

где

L - кажущееся изменение громкости,

I 1 , I 2 - сила звука соответственно до и после его изменения,

С- коэффициент пропорциональности.

Например, если сила звука изменится в 100 раз, то субъективное ощущение громкости изменится пропорционально 2 (т.к. lg100 = 2); если это изменение- 1000, то громкость возрастет в 3 раза (т.к. lg1000 = 3); рост силы звука в 10000 раз воспринимается как 4-кратное увеличение громкости. Поэтому принято измерять увеличение или уменьшение силы звука в специальных логарифмических единицах- "белах" (Б). Различие величин звуковой энергии (силы звука) в белах: N6 = lg I 2 / I 1 Б.

Иными словами, десятикратное изменение силы звука оценивается одним Белом. Например,

если I 2 = 10/ I 1 то lg I 2 / I 1 = lg10 = 1, т.е. N Б = 1 Б;

если I 2 = 100/ I 1 , то lg100 = 2 и N Б = 2 Б.

Мелкие изменения звуковых уровней измеряют в долях Бела. На практике в основном используется производная от Бела единица измерения, равная десятой части Бела, т.е. децибел (дБ).

Изменение уровня силы звука, выраженное в дБ, равно численному значению десятичного логарифма отношения сравниваемых уровней, умноженному на 10, т.е. N дБ = 10 lg I 2 / I 1 .

Обратимся к примерам.

Пусть N = I 2 / I 1 = 100 (I 2 > I 1 - усиление ), тогда N дБ = 10 lg100 = 10*2 = 20 дБ.

Пусть N = I 2 / I 1 = 1/100 (I 2 < I 1 - ослабление), тогда N дБ = 10 lg0,01 = 10·(-2) = -20 дБ.

Из этих примеров видно, что рост уровня выражается в децибелах положительным числом, а уменьшение - отрицательным.

Оценка изменений интенсивности звука в логарифмических единицах удобна еще и потому, что она дает возможность весь слышимый диапазон звуковых колебаний изобразить графически.

Громкостью называют субъективное качество, определяющее силу слухового ощущения, вызываемого звуком у слушателя. Громкость не может быть определена только величиной силы звука, так как она зависит от частотного состава звукового сигнала, от условий его восприятия и длительности воздействия. В акустике для количественной оценки громкости применяют метод субъективного сравнения измеряемого звука с эталонным, в качестве которого применяется синусоидальный тон частоты 1000 Гц. В процессе сравнения уровень эталонного тона изменяют до тех пор, пока эталонный и измеряемый звуки станут казаться равногромкими.

Как уже было сказано выше, чувствительность слуха зависит от частоты звукового сигнала. Порог слышимости, изображенный графически, представляет собой кривую, опускающуюся ниже всего в области частот 3000-4000 Гц и поднимающуюся к краям звукового диапазона. Из этой формы кривой следует, что для равногромкого ощущения интенсивность высоких и низких частот должна быть выше, чем средних.


Для практической работы важно помнить, что кривые равной громкости, как бы, выпрямляются с ростом общей громкости прослушивания. Другими словами, частотная зависимость слуха в большей степени сказывается при тихом прослушивании, чем при громком. Это важно учитывать, если, например, музыка, записанная при высоких уровнях громкости, будет прослушиваться тихо. В этом случае может возникнуть кажущееся изменение соотношений между частотными составляющими музыкального произведения. Так, при малой громкости прослушивания, из-за ослабления чувствительности слуха на низких и отчасти на высоких частотах звучание может казаться обедненным, лишенным сочности, естественности. Весьма желательно поэтому, чтобы в студиях звукозаписи громкоговорители работали с одинаковым уровнем громкости: это уменьшит возможность ошибок при субъективной оценке качества звучания.

Практически уровень громкости измеряется и настраивается в студиях при помощи специального электроакустического прибора – шумомера.

Примерные уровни громкости некоторых типичных звуковых источников приведены в таблице


Громкость зависит от условий, в которых звук воспринимается слушателем. Здесь, в первую очередь, следует учитывать эффект звуковой маскировки, напомнив, что в реальных условиях акустический сигнал не существует в условиях абсолютной тишины. Вместе с ним на слух воздействуют те или иные посторонние шумы, затрудняющие слуховое восприятие и, как в таких случаях говорят, маскирующие, в определенной степени, основной сигнал.

Так, при передаче оркестрового произведения из-за маскировки аккомпанементом может стать плохо разборчивой, невнятной партия солиста. Если одновременно существуют два сложных звуковых сигнала (например шум и музыка), возникает эффект взаимной маскировки. При этом, если основная энергия сигналов принадлежит к одной и той же области звуковых частот, то эффект взаимной маскировки будет наиболее сильным.

Речь в записи становится менее разборчивой не только из-за маскирования другими звуками, но и в результате самомаскировки при воспроизведении с громкостью большей, чем она звучит в природе. Этот недостаток в известной мере устраняется компрессированием. При воспроизведении скомпрессированной речевой фонограммы звук воспринимается достаточно громким, в то время как индикатор модуляции может показывать небольшие отклонения."- пишет Б.Я.Меерзон -"Акустические основы звукорежиссуры". Уч. изд. ГИТР

"В настоящее время существует огромное множество различных процессоров для динамической обработки звуковых сигналов - это различного рода компрессоры, гейты, экспандеры, левеллеры, лимитеры, и т.д. и т.п. В этом многообразии нетрудно и запутаться. Какой прибор необходим в конкретной ситуации?

Устройства динамической обработки сигналов применяются в двух случаях - либо в художественных целях, либо для получения более качественного звучания.

Заявляемые для распространённого сейчас носителя (CD) цифры - динамический диапазон в 96дБ - не совсем верны. То есть, если рассматривать их как отношение самого громкого сигнала к уровню шумов в паузе - цифры, безусловно, правильны. Однако это справедливо только для сигналов максимальной амплитуды. Динамический диапазон CD реально составляет величину, существенно меньшую, чем 96дБ.

Динамический же диапазон реальных сигналов может быть гораздо больше - например, для симфонического оркестра он может составлять до 120дБ! И как его “впихнуть” в ограниченный диапазон тракта?

Все устройства динамической обработки можно разделить на два больших класса - по характеру взаимосвязи их коэффициента усиления и уровня входного сигнала.

Если при увеличении уровня входного сигнала коэффициент передачи устройства уменьшается - то это компрессор и/или его разновидности. Такие, как лимитер, левеллер, “дакер”, и др.

Если же при увеличении входного сигнала коэффициент передачи устройства также увеличивается - то это экспандер или гейт.

Компрессор и его производные

Название компрессор происходит от английского глагола “to compress” - сжимать. Как следует из самого названия, компрессор - это устройство для сжатия, в данном конкретном случае - динамического диапазона исходного звукового сигнала.

Основными параметрами компрессии являются: степень компрессии “ratio”, порог срабатывания “threshold”, а также время срабатывания “attack” и время восстановления “release”. Первые две величины отражены на графике компрессии.

На этом рисунке по горизонтали отложено входное напряжение компрессора, выраженное для удобства в децибелах, по вертикали - выходное, а толстая линия - это проходная характеристика компрессора. На этом графике видно, что выходной сигнал - в точности равен входному, до точки срабатывания (начала работы) компрессора - THRESHOLD (порог срабатывания). Начиная с этой точки, выходной сигнал компрессора увеличивается в меньшей степени, чем входной, т.е. осуществляется компрессия. Мерой компрессии служит степень компрессии (RATIO).

Степень компрессии - это отношение величины приращения входного сигнала к величине вызванного им приращения выходного сигнала. (При этом - измеряемые величины должны быть выражены в децибелах!)

RATIO=dUвх(дБ)/dUвых(дБ)

Динамические характеристики компрессоров определяются временами срабатывания ATTACK и восстановления RELEASE.

Время срабатывания (ATTACK) - это промежуток времени между моментом, когда от источника подаётся скачок сигнала с уровнем на 6 дБ выше исходного, и моментом, когда выходной уровень достигает значения на 2 дБ выше установившегося значения выходного сигнала.


Время восстановления (RELEASE) - это промежуток времени между моментом, когда уровень сигнала источника уменьшается на 6 ДБ от исходного, и моментом, когда выходной уровень достигает значения на 2 дБ ниже его установившегося значения.


Естественно, что всё это должно происходить в области уровней входного сигнала, лежащих выше порога срабатывания!

По характеру реакции на входной сигнал все компрессоры можно разделить на две большие группы - с ручным управлением параметрами компрессии, и “автоматизированные”, с той или иной степенью автоматического управления этими параметрами.

В “ручных” - все динамические параметры задаются пользователем. Это обеспечивает очень большую свободу в их выборе, для получения тех или иных необходимых вам художественных результатов. Ведь не секрет, что компрессором можно изменить исходное звучание как угодно, хоть до “полной неузнаваемости”. Вот “ручной” компрессор - как раз и служит именно для этого, для специального преднамеренного изменения характера исходного звучания в нужную вам сторону. В зарубежной литературе этот тип компрессоров часто носит название CREATIVE - “творческий”, “созидательный”.

Соответственно, для их правильного использования - необходима достаточно высокая квалификация, а то ведь вместо улучшения звука можно его непоправимо испортить! Учтите: Перекомпрессированный сигнал исправить в дальнейшем невозможно!

В противоположность этому, в автоматизированных компрессорах - динамические параметры раз и навсегда установлены изготовителем, и их изменение пользователем невозможно. Хотя некоторые серьёзные производители, выпускающие действительно добротную продукцию, в ряде моделей предлагают пользователю на выбор несколько алгоритмов автоматизации, для различных вариантов обработки.


Как правило, большинство автоматизированных компрессоров не изменяют динамические параметры звука сколько-нибудь существенным образом, а только “выравнивают” исходное звучание, делают его более плотным и насыщенным.

Помимо основных, в некоторых моделях компрессоров имеются и некоторые дополнительные устройства, улучшающие их потребительские свойства.

Так, например, для уменьшения заметности момента включения компрессора в работу многие компрессоры имеют так называемый "мягкий порог" (Soft Threshold), обеспечивающий плавное вхождение в режим компрессии. На рисунке изображены проходные характеристики (зависимость уровня выходного сигнала от уровня входного) для двух компрессоров - обычного (ломаная линия 1) и компрессора с "мягким порогом" (кривая 2).

Как видно из рисунка, во втором случае по мере возрастания входного сигнала степень компрессии увеличивается плавно, а не включается скачкообразно, как в обычном компрессоре. Таким образом, удаётся сильно ослабить заметность начала компрессии, сделать этот момент практически неслышным.

Лимитер. В принципе, это не какой-то “отдельный вид” компрессоров, а всего лишь один из частных случаев работы компрессора. Лимитирование отличается от компрессирования, прежде всего степенью компрессии RATIO. Для лимитирования достаточно перевести этот регулятор в положение RATIO=бесконечность:1, при этом - независимо от приращения входного сигнала - уровень сигнала на его выходе увеличиваться не будет. (Естественно, что речь идёт о сигналах, лежащих выше порога срабатывания!) Но... Здесь есть одна тонкость.


Дело в том, что основное предназначение лимитера - защита последующих узлов тракта от перегрузок. Любых, даже малейших. При этом он должен на 100% не допускать превышения, установленного Вами выходного уровня, но абсолютно не трогать сигналы, лежащие ниже порога срабатывания. Отсюда - с неизбежностью следует вывод, что компрессоры с “мягким коленом” - принципиально непригодны для этих целей. Ведь для них само понятие “порога” имеет весьма расплывчатый смысл.

Лимитер, помимо большего RATIO, имеет и принципиально иные динамические характеристики. В самом деле - он должен очень быстро (в идеале - мгновенно!) “съесть” сигнал перегрузки, и столь же быстро вернуться к исходному состоянию. В автоматизированном компрессоре получить это - попросту невозможно.

Де-ессер, де-поппер.

Отличие де-ессера и де-поппера в том, что де-ессер работает на высокочастотных сигналах, убирая “цыканье” и шепелявость. Де-поппер - наоборот, работает в низкочастотной области спектра, убирая “пыханье” и бубнение. В остальном они принципиальных отличий не имеют. Главное отличие этих приборов от остальных устройств динамической обработки - это то, что порог срабатывания в них не фиксированный (ручкой управления THRESHOLD, как обычно), а “плавающий”. Что значит - плавающий? То, что он определяется разностью уровней обрабатываемой части спектра, с одной стороны, и всего остального - с другой стороны. Такое построение обеспечивает нормальное их функционирование, независимо от абсолютных уровней входных сигналов. Т.е. де-ессер постоянно анализирует спектр входного сигнала, и если “видит”, что уровень сигнала в установленной вами полосе превышает допустимое соотношение его и “всего остального”, то он уменьшает уровень сигналов в этой полосе до допустимой (установленной вами) величины.

Экспандер - это “компрессор наоборот”. Название - происходит от английского глагола “to expand” - расширять, растягивать. У него, как ранее уже отмечалось, коэффициент передачи пропорционален уровню входного сигнала, т.е. чем громче входной сигнал - тем громче выходной. Существуют две основных разновидности экспандера - “экспандер вверх” (Upward Expander) и “экспандер вниз” (Downward Expander).

Отличаются они по характеру реагирования на входной сигнал. “Экспандер вверх” - обрабатывает только сигналы, лежащие выше порога его срабатывания, делая громкие - более громкими. Тихие же сигналы, ниже порога срабатывания, он не трогает. В реальной практике почти не встречается, единственное исключение - гитарный бустер.


“Экспандер вниз” - наоборот, не трогает сигналы выше порога срабатывания, а только делает тише сигналы, лежащие ниже этого порога. В принципе, по характеру своего действия на сигнал - это устройство схоже с гейтом, и, как правило, применяется для аналогичных целей, для подавления слабых - но мешающих - сигналов. В этом качестве “экспандер вниз” входит составной частью практически во все шумоподавители (денойзеры).

Гейт - один из самых распространённых приборов динамической обработки. Его название происходит от английского слова “Gate” - клапан, ворота. Основное, “исходное” назначение гейта - отсечка сигналов малого уровня, для которых он и является своеобразным клапаном, не пропуская их на выход.


Динамика обработанного гейтом сигнала - будет отличаться от исходной. Сигналы, лежащие ниже порога срабатывания, будут полностью подавлены. У сигналов же выше порога - атаки будут зависеть от соотношения их исходной скорости и времени открывания гейта, т.е. результирующая - может быть как более “резкая”, так и более плавная. Аналогично - и с процессом затухания сигнала RELEASE. С той только разницей, что затухание исходного сигнала гейтом не удлинить. Можно только укоротить.

Именно это свойство гейта - менять динамику сигналов - как раз и является той главной причиной, по которой гейт получил столь широкое распространение."- написал М.Чернецкий. "Устройства динамической обработки сигналов ". "Звукорежиссёр"




Top