Что такое самовозбуждение в генераторе переменного тока? Самовозбуждающийся бесколлекторный генератор постоянного тока

Главное отличие этого типа генераторов в том, что намагничивающая обмотка возбуждения питается не от постороннего источника, а от самого генератора. Поэтому они называются генераторами с самовозбуждением.

Принципиальная электрическая схема и устройство магнитной системы четырех полюсного генератора с самовозбуждением.

В коллекторных генераторах, кроме основных полюсов и обмоток, есть ещё 2 дополнительных полюса, на которых размещается по витку дополнительной последовательной обмотки. Это необходимо для компенсации магнитного потока реакции якоря и сохранения положения электрической нейтрали машины при изменении нагрузки.

Для нормальной работы генератора с самовозбуждением необходимо, чтобы напряжение, подаваемое на намагничивающую обмотку, не изменялось в процессе сварки, т.е. не зависело от режима сварки. С этой целью в генераторе установлена третья дополнительная щетка z , которая располагается между двумя основными щетками a и b . При анализе работы данного генератора необходимо учитывать магнитный поток Ф я , создаваемый сварочным током, протекающим по виткам якорной обмотки, так называемый поток реакции якоря.

Картина распределения магнитных потоков под полюсом полярности N четырехполюсного генератора

Из рисунка видно, что под одной половиной полюсов силовые линии поля якоря усиливают намагничивающий поток Ф н. а под другой - ослабляют его. В целом подмагничивающее действие потока реакции якоря компенсируется его размагничивающим действием. Поэтому при анализе работы генераторов с независимым возбуждением влияние потока реакции якоря не учитывалось.

В генераторах с самовозбуждением параметры обмотки якоря и размагничивающей обмотки подобраны так, что под одной половиной полюсов (между щетками b—z ) магнитный поток размагничивающей обмотки компенсируется потоком реакции якоря. В результате напряжение на щетках b-z будет определяться только половиной магнитного потока намагничивающей обмотки.

Таким образом, напряжение, питающее намагничивающую обмотку, оказывается независящим от сварочного тока. Падающая же характеристика генератора обеспечивается за счет размагничивающего действия размагничивающей обмотки, проявляющегося под второй половиной полюсов.

Это позволяет заключить, что регулировка режима в коллекторных генераторах с самовозбуждением такая же. как и в генераторах с независимым возбуждением.

Особенность генераторов с самовозбуждением состоит в том, что их запуск возможен только при вращении якоря, в одном направлении, указанном стрелкой на торцевой крышке статора.

Это связано с тем, что первоначальное возбуждение генератора при его запуске происходит благодаря остаточному намагничиванию полюсов. При вращении якоря в противоположную сторону в обмотке возбуждения потечет ток обратного направления, который своим нарастающим магнитным полем в какой-то момент времени компенсирует остаточное намагничивание полюсов, т.е. суммарный магнитный поток под полюсами станет равным нулю. В этом случае для возбуждения генератора необходимо намагничивающую обмотку временно подсоединить к независимому источнику постоянного тока.


Агрегат АДД-303 с коллекторным генератором

ВЕНТИЛЬНЫЕ СВАРОЧНЫЕ ГЕНЕРАТОРЫ

Появились в середине 70-х годов 20 века после освоения производства силовых кремниевых вентилей. В этих генераторах функцию выпрямления тока вместо коллектора выполняет полупроводниковый выпрямитель, на который подается переменное напряжение генератора.

В сварочных агрегатах применяются генераторы три типа конструкции генераторов переменного тока: индукторный, синхронный и асинхронный

Конструкции генераторов переменного тока:

а — индукторного, б — синхронного, в — асинхронного

В России сварочные агрегаты выпускаются с индукторными генераторами с самовозбуждением, независимым возбуждением и со смешанным возбуждением.

Схема вентильного генератора с самовозбуждением

Схемы однофазного и трехфазного вентильных генераторов с независимым возбуждением

Конструктивная схема и связь параметров индукторного генератора

В индукторном генераторе неподвижная обмотка возбуждения питается постоянным током, но создаваемый ею магнитный поток имеет переменный характер. Он максимален при совпадении зубцов ротора и статора, когда магнитное сопротивление на пути потока минимально, и минимален при совпадении впадин ротора и статора.

Следовательно. ЭДС , наводимая этим потоком, тоже переменная. Три рабочие обмотки расположены на статоре со сдвигом на 120°, поэтому на выходе генератора образуется трехфазное переменное напряжение. Падающая характеристика генератора получается за счет большого индуктивного сопротивления самого генератора. Реостат в цепи возбуждения служит для плавной регулировки сварочного тока.

Отсутствие скользящих контактов (между щетками и коллектором) делает данный генератор более надежным в эксплуатации. Кроме того, у него более высокий КПД, меньшие масса и габариты, чем у коллекторного генератора. Значительно можно улучшить и динамические характеристики.

Принципиальная электрическая схема вентильного генератора типа ГД-312 с самовозбуждением

ВСХ генератора ГД-312

Для обеспечения работы на холостом ходу питание обмотки возбуждения осуществляется от трансформатора напряжения, а для питания ее в режиме короткого замыкания - от трансформатора тока. В режиме нагрузки - сварки - на обмотку возбуждения подается смешанный сигнал управления пропорциональный части выходного напряжения и пропорциональный току.

Вентильные генераторы выпускаются марки ГД-312 и применяются для ручной сварки металлов в составе агрегатов типа АДБ

Схемы соединения обмоток трехфазного индукторного генератора

Вентильный генератор ГД-4006

Принципиальная схема генератора ГД-4006

ВСХ генератора ГД-4006

В России выпускают несколько конструкций многопостовых агрегатов с количеством постов от 2х до 4х.

На рынке представлены универсальные агрегаты для нескольких способов сварки или сварки и плазменной резки. В частности агрегат АДДУ-4001ПР

Устройство агрегата АДДУ-4001ПР

Формирование исскуственных ВСХ агрегата АДДУ-4001ПР обеспечивается тиристорным силовым блоком с микропроцессорным управлением.

Более широкие технологические возможности обеспечивает применение в агрегатах инверторных силовых блоков, как например в агрегате Vantage500.

Инверторные источники питания.

Инвертирование в преобразовательной технике - это преобразование постоянного напряжения в переменное.

Инверторы сварочных источников питания выполняются на силовых тиристорах и транзисторах. Тиристорные инверторы проигрывают транзисторным по максимальной частоте преобразования (на порядок) и соответственно по массогабаритным показателям. Поэтому в производстве сварочных ИП они в настоящее время почти полностью вытеснены транзисторными инверторами.

Рассмотрим одну из широко применяемых схем транзисторного инвертирования.

Выпрямитель V1 преобразует напряжение сети (~380В, 50Гц) в постоянное, неравномерность которого сглаживается фильтром L1С1. Инвертор на транзисторах VT1-VT2 преобразует постоянное напряжение в переменное высокочастотное (~ 50 кГц). Далее напряжение (~ 380 В) понижается трансформатором Т до сварочного (80 В), выпрямляется выпрямителем V2 и сглаживается фильтром L2- C2. Поскольку трансформируется переменный ток большой частоты, то трансформатор изготавливается не с железным, а с ферритовым сердечником, что снижает его вес примерно в 10 раз. Поскольку частота трансформируемого тока большая, то сокращается длительность переходных процессов с n*10 -2 с до 10 -3 с и менее.

В настоящее время основную часть инверторного оборудования для сварочного производства составляют ИП с высокочастотными трансформаторами, поскольку условия электробезопасности при ручной сварке и сварке шланговыми полуавтоматами, а также при плазменной резке требуют гальванической развязки вторичной цепи от силовой сети.

Регулировка режима (получение падающей вольтамперной характеристики и регулировка вторичного напряжения на жёсткой характеристике) как правило осуществляется путём изменения частоты.

Осциллограммы при регулировании напряжения изменением амплитуды (а), частоты (б) и ширины (в) импульсов

Для получения падающей характеристики вводится обратная связь по току: с его увеличением автоматически снижается частота, что влечет уменьшение выходного напряжения. Для стабилизации выходного напряжения на жестких характеристиках вводится обратная связь по напряжению.

Внешние характеристики выпрямителей с инвертором

В 80-х годах и до середины 90-х годов инверторные выпрямители выпускались небольшой мощности (до 160 А), для работы на монтаже и для бытовых нужд. В середине 90-х появилось новое поколение так называемых полевых транзисторов, способных выдерживать большие токи. Это позволило приступить к выпуску промышленных инверторов на токи 300-500 А.

Современные переключающие приборы: МОП-транзистор (а); биполярный транзистор с изолированным затвором (б); транзисторно-диодный модуль — чоппер (в); силовой модуль с оптимизированным управлением и комплексной внутренней защитой (г)

В сварочных ИП с силовыми транзисторами используется несколько схем инвертирования.

Однотактный преобразователь с прямым включением диода

Однотактный преобразователь с обратным включением диода

Двухтактный мостовой преобразователь

Двухтактный полумостовой преобразователь

Резонансный двухтактный мостовой преобразователь

Реальные силовые схемы инверторных ИП могут существенно отличаться от типовых.

Выпрямитель ДС.250.33

Выпрямитель Сaddy Arc 150

Выпрямитель InvertecV350-РRО

Выпрямитель Форсаж-160

Магнитное поле в генераторах создается, как мы говорили в § 167, электромагнитами, через обмотки которых должен проходить постоянный ток. В генераторах переменного тока ток для обмоток индуктора получают либо от отдельной аккумуляторной батареи, либо – чаще – от отдельного генератора постоянного тока, укрепленного на одном валу с главным генератором (рис. 326). Такого рода генераторы, в которых ток для создания магнитного поля берется от отдельного источника, называются генераторами с независимым возбуждением.

В генераторах постоянного тока можно использовать для создания постоянного магнитного поля постоянный ток, вырабатываемый самим генератором. Такого типа генераторы называют генераторами с самовозбуждением.

Соединить цепь индуктора, цепь якоря и сеть можно двумя различными способами, которые схематически показаны на рис. 339 и 340.

Рис. 339. Схема соединения индуктора, якоря и сети в генераторе с последовательным возбуждением

Рис. 340. Схема соединения якоря, индуктора и сети в генераторе с параллельным возбуждением: – регулировочный реостат в цепи индуктора, – пусковой реостат в цепи якоря

На рис. 339 изображен так называемый генератор с последовательным возбуждением, или, как его иногда называют, сериесный генератор. Здесь цепь индуктора, цепь якоря и сеть соединены последовательно, так что весь ток, индуцированный при работе генератора в якоре, проходит последовательно через индуктор и через сеть. Ток через индуктор равен току в сети.

В генераторе с параллельным возбуждением, называемом также шунтовым генератором (рис. 340), цепь якоря и цепь индуктора соединены параллельно, и к ним присоединена сеть (нагрузка).

Таким образом, ток, возникающий в цепи якоря, разветвляется: часть его проходит через сеть, а другая часть ответвляется и проходит через обмотки индуктора, создавая магнитное поле, необходимое для работы генератора. В этом случае ток в индукторе составляет лишь часть – обычно небольшую – тока в сети.

169.1. По внешнему виду легко сразу отличить, имеем ли мы дело с сериесным или шунтовым генератором (или двигателем). В сериесных генераторах обмотка возбуждения состоит из относительно небольшого числа витков толстой проволоки; обмотка же шунтовых генераторов делается из более тонкой проволоки, но содержит значительно большее число витков. Чем это объясняется?

169.2. Можно ли запустить сериесный генератор без нагрузки, т. е. отключив его от сети? Можно ли таким же образом запустить шунтовый генератор?

Если бы при запуске генератора его электромагниты были совершенно размагничены, т. е. не создавали никакого магнитного поля, то, очевидно, при вращении якоря в нем не возникала бы индуцированная э. д. с. и неоткуда было бы взяться току для питания электромагнитов. Но фактически сердечники один раз намагниченных электромагнитов сохраняют всегда некоторое, хотя бы и очень слабое остаточное намагничивание. Таким образом, в генераторе всегда имеется магнитное поле, хотя до начала работы генератора это поле очень слабо. Как только в этом поле начнет вращаться якорь, в нем возникнет слабый индуцированный ток. Проходя по обмоткам электромагнита, этот ток усиливает магнитное поле, возрастание которого приводит к усилению индуцированной э. д. с. и тока. При этом еще более усиливается поле, еще более возрастает индуцированный ток и т. д. Таким образом, в первые моменты напряжение на зажимах генератора очень мало, но оно быстро возрастает и достигает того значения, на которое генератор рассчитан.

169.3. На генераторах постоянного тока всегда указывается, в какую сторону нужно вращать их ротор. Никогда не следует пускать генератор в обратную сторону. Почему? Что произойдет, если мы пустим генератор в обратную сторону?

169.4. Что следует сделать, если случайно индуктор генератора размагнитится и он при запуске не будет давать напряжения?

Эксплуатационные свойства генераторов с последовательным и параллельным возбуждением существенно различны. В генераторах первого типа, если мы отключим их от внешней сети, цепь якоря и индуктора оказывается разомкнутой, и ток через них проходить не может. Поэтому не будет иметь места и описанный выше процесс самовозбуждения, т. е. постепенного нарастания э. д. с., индуцируемой в якоре; следовательно, генератор с последовательным возбуждением нельзя запустить вхолостую, т. е. без нагрузки. По мере того, как мы увеличиваем эту нагрузку, т. е. уменьшаем сопротивление внешней цепи и, стало быть, увеличиваем ток в ней, возрастает и ток в индукторе, равный току в сети. До тех пор, пока железо в индукторе не достигло состояния магнитного насыщения, будет соответственно возрастать и создаваемый индуктором магнитный поток, а вместе с ним будут возрастать и индуцируемая в якоре э. д. с. и напряжение на зажимах генератора. Когда же железо в индукторе намагнитится до насыщения, то дальнейшее увеличение тока в его обмотках будет вызывать очень малое возрастание магнитного потока, которое уже не в состоянии компенсировать возрастающую потерю напряжения на обмотках якоря. Поэтому напряжение на зажимах генератора начнет падать; при коротком замыкании внешней сети напряжение упадет до нуля, а ток короткого замыкания будет в несколько раз превосходить нормальный ток, на который рассчитан генератор.

Таким образом, зависимость напряжения на зажимах генератора с последовательным возбуждением от силы тока, который он посылает во внешнюю сеть, имеет вид, изображенный на рис. 341 (за 100% приняты нормальные значения напряжения на зажимах генератора и силы тока в сети). Эта кривая, называемая внешней характеристикой генератора, показывает, что с ростом нагрузки напряжение сначала круто растет, достигая нормального значения при нормальном токе, а затем спадает до нуля. Ясно, что такая резкая зависимость напряжения генератора от силы потребляемого тока практически очень неудобна. Поэтому генераторы с последовательным возбуждением на практике в качестве генераторов постоянного тока применяются чрезвычайно редко.

Рис. 341. Внешняя характеристика генератора с последовательным возбуждением

Внешняя характеристика генератора с параллельным возбуждением имеет совершенно иной вид (рис. 342). По мере того как мы уменьшаем сопротивление сети, т. е. увеличиваем ток в ней, напряжение на зажимах генератора падает. Нетрудно понять, чем это обусловлено. Когда уменьшается сопротивление сети (растет нагрузка), то все большая часть тока в якоре ответвляется в сеть и все меньшая – в индуктор, так как отношение силы тока в этих параллельно по отношению к якорю включенных цепях обратно пропорционально их сопротивлениям (§ 50). Поэтому с ростом нагрузки уменьшается ток в цепи индуктора, а следовательно, и его магнитный поток и индуцированная в якоре э. д. с. Однако вначале, пока железо индуктора находится в состоянии насыщения, это падение происходит довольно медленно, и при изменении тока от нуля до нормального значения, принятого на рисунке за 100%, не превышает 10-15 % от нормального значения напряжения, на которое генератор рассчитан. Таким образом, в довольно широком интервале изменений нагрузки напряжение генератора изменяется очень мало.

Рис. 342. Внешняя характеристика генератора с параллельным возбуждением

Если в генераторе с параллельным возбуждением мы будем еще больше уменьшать сопротивление сети, то ток сначала будет продолжать расти, несмотря на уменьшение напряжения на зажимах генератора. При некоторой нагрузке, примерно вдвое превышающей нормальную, на которую генератор рассчитан, ток достигает максимального значения и потом начинает падать, потому что, после того как железо индуктора выйдет из состояния магнитного насыщения, падение напряжения, вызванное уменьшением тока в обмотках индуктора, происходит очень круто, и влияние этого фактора пересиливает влияние уменьшения сопротивления сети. При коротком замыкании сети ток упадет до относительно небольшого значения ( на рис. 342), так что для генератора с параллельным возбуждением короткое замыкание не опасно.

Еще большего постоянства напряжения при изменениях силы тока в сети можно добиться в генераторах с так называемым смешанным возбуждением или компаунд-генераторах. В этих генераторах на полюсных наконечниках индуктора имеется по две обмотки. Одна из них соединена с якорем по схеме последовательного соединения, а другая – по схеме параллельного соединения. Так как при увеличении нагрузки э. д. с., обусловленная первыми обмотками, возрастает, а э. д. с., связанная со вторыми, падает, то при надлежащем расчете можно осуществить почти полное постоянство напряжения на зажимах генератора при очень больших изменениях силы тока в сети.

Многим автомобилистам интересно, как возбудить генератор, не используя АКБ. Это бывает нужно тем автомобилистам, которые часто отправляются на дальние расстояния, а машина без подзарядки продержится за счет аккумулятора не более 2 часов. Давайте выяснять, как это сделать.

Основное про эффект возбуждения

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Как известно, вольтаж, формируемый геном на различных оборотах двигателя, регулируется посредством обмоток возбуждения. Ток поддерживается на постоянном вольтаже – 13,8-14,2 V.

Чтобы обеспечивать автомобильную систему (многочисленные потребители) током, предусмотрен регулятор или РН. Он бывает на отечественных автомобилях и некоторых иномарках, как правило, встроен внутрь генератора. В обиходе такой регулятор называется шоколадкой, таблеткой и т.д.

Ген связан с плюсовым зажимом АКБ через вывод «30». Его также называют плюсом, «В» или «ВАТ». Что касается отрицательного вывода, то он обозначается, как «31» или минус. Также в обиходе встречаются другие его обозначения: «D», «В-» и т.д. Клемма таблетки, используемая для подачи питания от автомобильной сети при включенном зажигании – вывод «15» или «S». Наконец, вывод, рассчитанный для подавания тока на поверочную лампу зарядки, обозначается, как «61» или «D+».

Если прекращается подзарядка АКБ, то это в большинстве случаев свидетельствует о порче шоколадки. Однако здесь не стоит отчаиваться, ведь достаточно будет подать напряжение на обмотки, т.е, возбудить генератор, чтобы доехать до магазина или ближайшего СТО.

Итак, чтобы доехать до нужного места, не подвергая АКБ глубокому разряду, надо снять шоколадку и возбудить ген.

Схема генераторов

Возникает вопрос, как подключить генератор? Для того чтобы суметь возбудить ген, без использования АКБ, рекомендуется тщательно изучить схему и принцип функционирования генов различных модификаций.

Также важно понимать, зачем нужен ген, что он делает конкретно. Иначе говоря, ген – это электромашина, служащая для преобразования механической энергии в электроток. Благодаря гену происходит обратная зарядка батареи и обеспечение всех электрических потребителей, находящихся в рабочем положении, током.

Ген расположен в передней части двигателя, а приводится в движение от кривошипного вала. На автомобилях-гибридах ген осуществляет работу стартера. Примечательно, что такая же схема наблюдается и в некоторых «полноценных» автомобилях, оснащенных конструкцией стоп-старт.

Становится ясно, что автомобильные гены могут иметь две схемы, два конструктивных вида. Их отличие в разнице компоновки вентилятора, выпрямительного блока и приводного шкива. Также генераторы с разной схемой отличаются геометрическими размерами.

Общие параметры обоих типов генераторов остаются неизменными. Любой ген должен иметь в своем составе ротор или индуктор, статор и другие части.

Рассмотрим схему автогенератора отечественной «классики». Такой ген ставился практически на все модели старых отечественных машин.

Теперь рассмотрим другую схему, более современную. В частности, она используется на «восьмерке» и других автомоделях от ВАЗ.


А это схема, как соединяется ген и, собственно, как он функционирует.

Основной функцией ротора гена является создание магнитполя. Для этого на валу имеется обмотка или ВО (возбудитель). ВО расположен на клювах или выступах полюсных половинок. На валу также предусмотрена контактная группа, состоящая из 2-х медных колец. Через них идет напряжение на ВО. Кольца припаиваются к выводам ВО.

Примечание. Довольно редко, но все же, могут встречаться не медные, а стальные или латунные кольца.

Кроме того, на роторном валу нашли место для крыльчаток вентилятора (кол-во их зависит от конструкции модели). В этом же месте зафиксирован бывает ВПД (шкив приводной).

Еще один узел ротора – подшипники.

Что касается статора, то он выполняет функцию создания переменного напряжения. В нем нашли место сердечник и обмотка. Металлический сердечник собран из пластин.

В статоре бывает 36 пазов, служащих для укладывания обмотки. Всего получается устанавливать три обмотки, тем самым, обеспечивая 3-фазное соединение.

Интересно, что помещают обмотки в выемки двумя путями – волной либо петлей. А взаимосоединяются обмотки либо по схеме «звездочка», либо — «треугольник».

Выпрямительный блок или ВБ необходим для перестройки значений тока, производимого геном. Он преобразует синусоидальный ток в постоянный автомобильной бортовой сети.

ВБ – это просто пластины, траки, эффективно отводящие тепло. В них вмонтированы диоды. ВБ содержит 6 силовых диодов-полупроводников. На каждую фазу идет по два диода, естественно, один на плюс, а другой – на минусовой вывод гена.

Щетки – это узел, обеспечивающий токопередачу на контактные кольца. Щеточный узел состоит из графитовых элементов, собственно самих щеток, пружин-прижимателей и держателя. В генах современного типа щеточный узел создает вместе с регулятором (шоколадкой) единый блок.

Таблетка – предназначена поддерживать ток гена в определенных значениях. Современные регуляторы бывают электронными (едиными) или гибридными. Если в ходу гибридное исполнение, то в схему внедряются радиокомпоненты и электроприборы, если интегральное (единое) – все элементы исполнены с помощью ТМТ (микроэлектроники).

Генераторный привод функционирует за счет вращения ременной передачи. Тем самым, он обеспечивает индуктору вращение с той скоростью, которая необходима (она, как известно, должна превышать скорость вращения кривошипного вала в несколько раз).

Итак, на большинстве моделей генов ВО подключается через отдельную группу, состоящую из 2-х диодов. Последние еще называют выпрямителями, они препятствуют прохождению напряжения разряда АКБ при стоячем ДВС.

Примечание. Если обмотки соединены по схеме «звездочка», то на нулевом выводе ставится 2 добавочных диода силового типа, что позволяет увеличить мощность гена аж на 15%. ВБ монтируется в схему гена посредством электропайки или механической фиксации.

Регулятор или таблетка в генераторе – штука важнейшая. Именно она в ответе за стабилизацию напряжения. А это, как известно, очень требуется при изменениях частоты вращения кривошипного вала и ДВС. Стабилизация шоколадкой производится на автомате, путем воздействия на ВО. Таким образом, таблетка управляет и частотой сигналов напряжения, и продолжительностью импульсов.

Интересный момент. Таблетка изменяет ток, идущий для зарядки АКБ за счет термокомпенсации напряжения. Другими словами, чем становится теплее вокруг, тем меньше тока идет к батарее.

Как возбудить ген

Итак, что же надо сделать, чтобы возбудить генератор? Как и говорилось выше, следует демонтировать таблетку с генератора, так как неисправность возникла именно в нем. Далее, соединить плюсовые выводы обоих устройств, а минусовой выход в шоколадке разрезать. В процессе сборки соединить его с массой щеток.

От клеммы «30» гена изолировать провод, подсоединить в выводную цепь «15» индикатор, мощностью не более 15 Вт. Это касается генов серии Г222. Если агрегаты других моделей, то возбуждать надо, подключая индикатор к выводу «В».

Самовозбуждение генератора можно представить себе и так.

На представленной выше схеме левыми крайними стрелками отмечены диоды. Они устанавливаются только в генераторы современных моделей, в старых агрегатах их не бывает. Точнее говоря, схема без представленных диодов считается классической, а с ними – модернизированной, современной.

На некоторых моделях генов якори подразумевают наличие щеток. Они тоже снимаются, высверливается таблетка. Один контакт напрямую идет к якорю через диоды на плюс, как видно на схеме, второй контакт – на минус (самая нижняя стрелка).

Соответственно, на схеме отмечено: плюс и минус.

Ток начнет подаваться не сразу, т.е, не с малых оборотов. Где-то, если смотреть по тахометру, напряжение начнет вырабатываться после 4000 об/мин. Другими словами, газуем до 4 тысяч оборотов, появляется ток. Если спускаемся до 1 тысячи оборотов в минуту или меньше, напряжение пропадает, нужно будет заново газануть. Примерно таков принцип генерации тока при самовозбуждении.

На некоторых автомоделях двигатель установлен малооборотистый. В этом случае придется делать что-то со шкивами, чтобы увеличить начальную скорость вращения. Для обычного двигателя все должно быть нормально.

Идем дальше. На выходе получается не 12 вольт, это следует знать изначально. Без регулятора ген будет выдавать все, что он сможет, вплоть до 20-30 вольт. К примеру, во время старта и до 36 вольт доходит. Это можно проверить по лампочке такого вольтажа, подключенной к выходам. Дальше уже опускается до 20 вольт.

Схему, безусловно, можно доработать. Например, врезать конденсатор в плюсовой провод, идущий на якорь. Делается это для того, чтобы при падении оборотов двигателя, не допустить спада напряжения. Хороший конденсатор можно поставить также на выходе, чтобы сгладить первый скачок напряжения и регулировать, сглаживать спады.

Реализуя данную схему, важно помнить о выдаче большого напряжения. Это не 12 вольт, можно легко спалить лампочки, ЭБУ и всю автомобильную электрику в принципе.

Предупреждение. В режиме самовозбуждения ген будет отдавать все, что сможет без каких-либо ограничений, что чревато перегревом и для него самого. Чуть больше нагрузки, и пиши панегирик генерирующему устройству. Поэтому данный способ применим только, как вынужденная мера, опять же, если вы остались на дороге и надо доехать до ближайшего СТО.

Ток возбуждения у большинства генераторов является частью тока якоря. При пуске в ход генератора сначала ток в якоре, а следо­вательно, и в обмотке возбуждения отсутствует, но в массивной станине всегда сохраняется небольшой магнит­ный поток Ф r остаточного намагничи­вания, равный 1-3 % нормального ра­бочего потока машины. Когда первичный двигатель вращает якорь генератора, остаточный поток индуктирует в обмот­ке якоря небольшую ЭДС. В случае ге­нератора с параллельным возбуждением эта ЭДС E я, х создает некоторый ток i B в обмотке возбуждения, а следовательно, возникает некоторая МДС возбуждения. По отношению к магнитному потоку Ф г она может быть направлена согласно или встречно, т. е. подмагничивать или размагничивать магнитопровод машины. Для самовозбуж­дения необходимо согласное направление, что имеет место при пра­вильном соединении обмотки возбуждения с якорем. При таком со­единении напряженность поля от тока возбуждения усиливает магнит­ное поле машины, а последнее индуктирует большую ЭДС в обмотке якоря. Возрастание ЭДС вызывает дальнейшее увеличение тока воз­буждения. Ограничение самостоятельного увеличения потока и тока возбуждения связано с насыщением магнитной цепи машины.

После окончания переходного процесса ЭДС в обмотке якоря Е я и ток возбуждения I в будут иметь постоянные значения. Найдем эти значения, воспользовавшись характеристикой холостого хода машины (рис. 13.26). Если пренебречь сопротивлением цепи якоря r я по сравнению с сопротивлением цепи возбуждения r в, то устано­вившийся ток возбуждения r в определяется из условия Е я = r в I в. Этому условию на графике соответствует точка пересечения характе­ристики холостого хода Е я (I B) и прямой Е я = r в I в, т. е. точка А. Тангенс угла наклона прямойЕ я = r в I в к оси абсцисс зависит от r в. Если уменьшать I в, например вводя реостат в цепь возбуждения, то точка пересечения смещается влево (А"). При достаточно большом сопротивлении цепи возбуждения, называемом критическим, машина не возбуждается.

Если в машине отсутствует остаточная намагниченность (из-за короткого замыкания или механических ударов), то для ее восстанов­ления нужен посторонний источник постоянного тока хотя бы малой мощности. Этот источник нужно на короткий срок замкнуть на обмотку возбуждения размагнитившейся машины, а затем использовать создан­ное остаточное намагничивание для нормального возбуждения.

Явления самовозбуждения используются в генераторах с параллель­ным и смешанным возбуждением.

13.10. Генераторы с параллельным, последовательным и смешанным возбуждением

У генератора с параллельным возбуждением часть тока якоря слу­жит для возбуждения основного магнитного поля машины (рис. 13.27). Эти генераторы наиболее часто применяются для получения постоян­ного тока, так как они не требуют дополнительного источника электро­энергии для цепи возбуждения, что существенно упрощает обслужи­вание машины; вместе с тем напряжение таких генераторов мало изме­няется из-за колебаний нагрузки.

При пуске в ход генератора с параллельным возбуждением для создания магнитного потока в магнитопроводе используется выше описанное явление самовозбуждения.

Характеристика холостого хода генератора при параллельном возбуждении практически не отличается от характеристики при неза­висимом возбуждении, так как влияние на эту характеристику изме­нения напряжения r в 1 в и реакции якоря оттока возбуждения ничтожно. Это совпадение вида характеристик имеет место и для регулировочной характеристики.

Но внешняя характеристика при параллельном возбуждении гене­ратора (а) идет значительно ниже, чем при независимом возбуждении () (рис. 13.28). Причиной этому является уменьшение тока возбужде­ния при понижении напряжения, так как I в = U / r B . При независимом возбуждении понижение напряжения между выводами генератора при увеличении тока якоря вызывается двумя причинами: увеличением напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья - уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цепи генератора (пологой части маг­нитной характеристики), уменьшение ЭДС якоря меньше уменьшения тока возбуждения (рис. 13.29). В таких условиях при уменьшении сопротивления цепи нагрузки ток якоря возрастает. Но условия резко изменяются, когда в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения вызывает пропорциональное уменьшение потока и ЭДС якоря, что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое по­нижение ЭДС и т. д. Имеет место своеобразное саморазмагничивание генератора, заканчиваю­щееся тем, что в машине при коротком замыкании якоря сохраняется только остаточная намагниченность, под­держивающая ограниченный (меньше номинального) ток короткого замыкания.


Ток якоря, при котором машина переходит в режим саморазмагни­чивания, называется критическим I кр. Его значение больше номиналь­ного в 2-2,5 раза. Участок внешней характеристики ниже I кр (штри­ховая линия на рис. 3.28) соответствует неустойчивому режиму.

Номинальное изменение напряжения у генератора при параллель­ном возбуждении значительно больше, чем при независимом, и состав­ляет 8-15 %.

В генераторе с последовательным возбуждением якорь соединен последовательно с обмоткой возбуждения, благодаря чему ток нагрузки является вместе с тем током возбуждения (рис. 13.30). Обмотка воз­буждения w такой машины выполняется из провода, рассчитанного на большой ток якоря; число витков такой обмотки мало.

При холостом ходе генератора с последовательным возбуждением ЭДС в обмотке его якоря будет индуктироваться только потоком оста­точного намагничивания. Следовательно, у этого генератора нельзя снять характеристику холостого хода. Отсутствует также у него и регулировочная характеристика.

Напряжение этого генератора (рис. 13.31) сначала возрастает с увеличением тока якоря. Затем вид характеристики начинает изме­няться из-за магнитного насыщения (ЭДС якоря перестает увеличи­ваться, в то время как продолжает возрастать напряжение на активном сопротивлении якоря) и размагничивающего действия реакции якоря. В результате напряжение генератора при дальнейшем возрастании нагрузки уменьшается. Из-за непостоянства напряжения генераторы с последовательным возбуждением применяются лишь в немногих специальных случаях.

Генератор со смешанным возбуждением имеет две обмотки возбужден ния: параллельную w пар и последовательную w пос (рис. 13.32). У такого генератора напряжение остается практически постоянным при изме­нениях нагрузки в определенных пределах. Это достигается путем использования последовательного возбуждения для компенсации уве­личения падения напряжения на активном сопротивлении якоря и уменьшения тока в параллельной обмотке возбуждения, а также для компенсации размагничивающего действия якоря при увеличении тока нагрузки. Благодаря наличию обмотки последовательного воз­буждения

главный магнитный поток генератора и вместе с ним ЭДС Е я возрастают g увеличением нагрузки. Соответствующим подбором числа витков обмотки последовательного возбуждения можно достичь равенства напряжений генератора при холостом ходе и при номинальной на­грузке (кривая а на рис. 13.33).

Генератор со смешанным возбуждением удобен в установках относительно небольшой мощности для предупреждения возникнове­ния значительных изменений напряжения при отключениях отдельных потребителей. Но использование таких генераторов для параллельной работы обычно неудобно: случайное понижение частоты вращения первичного двигателя генератора может снизить ЭДС генератора до уровня, меньшего напряжения сети, из-за этого ток в якоре генератора и в его последовательной обмотке возбуждения изменит свое направле­ние, что может вызвать перемагничивание генератора и тяжелую ава­рию установки.

Имя изобретателя: Филиппов А.Н.; Ермилов Н.Г.
Имя патентообладателя: Филиппов Алексей Николаевич
Адрес для переписки: 450078 Башкорстостан Уфа, ул.Алтайская 64-16, Филиппову А.Н.
Дата начала действия патента: 1996.07.23

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к электромашиностроению и может быть применено в производстве машин постоянного тока.

Существующие машины постоянного тока в своем устройстве имеют коллекторные узлы с щетками, как средство коммуникации, с преобразованием переменного тока в постоянный.

Наличие скользящих контактов во вращающейся обмотке выходного напряжения существенно снижает их надежность и усложняет эксплуатацию .

Одно из возможных исполнений содержит неподвижный индуктор, щеточно-контактный аппарат и вращающийся якорь с валом, снабженный обмоткой и коллекторным узлом.

К недостаткам описанных аналогов следует отнести:
- подвижность рабочей обмотки выходного напряжения с наличием в ней коллекторного узла с токосъемными щетками, что снижает надежность работы устройства,
- отсутствия системы самовозбуждения.

Униполярный генератор, выбранный в качестве прототипа /3/, содержит статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку и индуктор.

Последовательное соединение медных стержней вращающейся обмотки выходного напряжения в устройстве прототипа выполнено посредством многочисленных щеток, установленных на каждой коллекторной пластине.

Недостатками устройства прототипа являются:
- подвижность, размещенной на валу якоря рабочей обмотки выходного напряжения с наличием в ней множественных коллекторных узлов с коммутационными пластинами и щетками токосъема,
- отсутствие устройства самовозбуждения генератора.

С целью повышения надежности и обеспечения самовозбуждения генератора предлагается новое устройство с превращением подвижной рабочей обмотки в неподвижную и с исключением на ее цепи множественных скользящих контактов. Это достигается тем, что в известном униполярном генераторе - прототипе, содержащем статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку и индуктор, внесены следующие изменения:
- в устройстве установлено два индуктора, закрепленных на одном валу,
- постоянные магниты обоих индукторов установлены встречно одноименными полюсами,
- в межполюсном пространстве стационарно установлен сдвоенный зубчатый статор с кольцеобразным полым магнитопроводом,
- обмотка выходного напряжения и кольцевой пустотелый магнитопровод имеют вид тороидальной катушки с прямоугольным поперечным сечением сердечника,
- пустотелость магнитопровода выполнена для образования воздушной изоляции между магнитными потоками,
- в устройстве отсутствуют щеточно-контактные узлы как в цепи возбуждения, а также и в схеме выходного напряжения,
- устройство представляет из себя спаренные два генератора.

На фиг. 1 представлен в продольном разрезе общий вид предлагаемого устройства.

На фиг. 2 изображен магнитопровод статора с обмоткой выходного напряжения, вид сбоку.

На фиг. 3 представлен узел крепления магнитопровода статора к корпусу генератора и являющейся частью магнитопровода.

На фиг. 4 приводится электрическая схема рабочей обмотки выходного напряжения.

На фиг. 5 изображена та же электрическая схема в сечении машины.

На фиг. 6 приводится магнитопровод статора и одновитковая схема рабочей обмотки выходного напряжения.

На фиг. 7 показан индуктор генератора.

На продольном разрезе (фиг. 1) представлена конструктивная схема предлагаемого устройства, содержащего корпус генератора 1, съемные боковые щиты корпуса 2, вентиляционные прорези в щитах 3, прокладки регулирования воздушного зазора 4, вал генератора 5, вентилятор охлаждения 6, магнитопровод индуктора 7, путь магнитного потока в индукторе и статоре 8, постоянные магниты индуктора 9, воздушный зазор 10, узел крепления магнитопроводов инжекторов 11, сдвоенный сборно-разборный магнитопровод статора 12, узел крепления магнитопровода статора к корпусу 1 и являющегося его частью 13, воздушная изоляция между магнитопроводами 14, элементы активных аксиальных проводников обмотки выходного напряжения 15, выводные концы обмоток 16, болты крепления статора к корпусу генератора 17, соединительные проводники активных элементов обмотки выходного напряжения, установленные горизонтально 18, узел крепления и разъема сборно-разборного магнитопровода статора 19.

На фиг. 2 изображен магнитопровод статора 12 с обмоткой выходного напряжения 15 и выводными концами 16, пазы для укладки активных элементов обмотки выходного напряжения 20, их горизонтальные соединительные проводники 18 не видны, но их видно на чертеже по малому диаметру статора, где они расположены коаксиально валу 5. Цифрой 21 указаны отверстия для крепления магнитопровода.

На фиг. 3 показан чертеж узла крепления корпуса генератора и магнитопровода статора 13, цифрой 22 указана резьба для болтового крепления к корпусу, а цифрой 23 отверстия крепления с магнитопроводом статора 12.

На фиг. 4 показана электрическая схема последовательного соединения обмотки выходного напряжения, где цифрой 15 обозначены ее активные проводники, 16 выводные концы, соединительные проводники 18.

На фиг. 5 приводится электрическая схема последовательного соединения обмотки выходного напряжения 15 для дополнительного пояснения к фиг. 1. Скрешивание соединительных проводников 18 по малому диаметру магнитопровода показано условно, т.к. в разрезе генератора невозможно полностью изобразить схему, а фактически его не будет. Это видна по фиг. 4. На фиг. 5 под цифрой 7 указаны магнитопроводы, 8 - путь магнитного потока, 9 - постоянные магниты, 12 - магнитопровод статора, цифрой 19 указан узел крепления и разъема двух частей магнитопровода.

На фиг. 6 изображена схема обмотки выходного напряжения 15 совместно с магнитопроводом 12. Как видно, мы имеем дело с тороидальной катушкой, но с той лишь разницей, что она имеет пустотелый сердечник в виде кругового кольца и не круглого сечения, а прямоугольного. Цифрой 24 указан путь магнитного потока в магнитопроводе 12 от обмотки выходного напряжения.

На фиг. 7 изображен индуктор генератора. Цифрой 7 обозначен кольцевой магнитопровод, а 9 - дискретно рассредоточенные постоянные магниты.

Поверхности соединительных проводников 18 (фиг. 5). уложенных горизонтально в пазах 20 под прямым углом к магнитному потоку являются поверхностями равного электрического потенциала, определяемого уравнением:

U(X, Y, Z)=const,

(см. Л.Р.Нейман и П.Л.Калантаров, ТОЭ. ч. 1 ГЭИ, М.Л. 1959 г. стр. 90). Вдоль любой линии на этой поверхности имеем:

Следовательно разность потенциалов любых двух точек на участках А-С и В-G, лежащих на этой поверхности, будет равна нулю. (см. Л.Р.Нейман и П.Л. Калантаров, ТОЭ, ч. 1. ГЭИ. 1959 г., стр. 40). В отличие от поверхности проводников 15 активной части обмотки на участке A-D, которые пересекаются магнитным потоком с разной линейной скоростью в точках А и D, т.е. изменяемым магнитным потоком, поверхности соединительных проводников 18 в точках А и С, а также B-G пересекаются не изменяемым магнитным потоком и при равной линейной скорости в этих точках, т.е. в этих точках не может быть разности потенциалов, а следовательно не будет возникать и ЭДС. Потенциалы в точках А-С и B-G будут равными.

В изотропной, в отношении проводимости, среде линии тока совпадают с линиями напряженности поля, т.к. в любой точке такой среды векторы плотности тока и напряженности электрического поля, связанные соотношением d = UE имеют одно направление. Поэтому в изотропной среде линии тока пересекают поверхности равного потенциала под прямым углом (см. там же стр. 90).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью (см. "Справочник по элементарной физике", Наука, 1988 г. , Н.И.Кошкин и М.Г. Ширкевич, стр. 119). Работа электрических сил при перемещении заряда по эквипотенциальной поверхности равна нулю, перемещение зарядов не будет.

В замкнутом контуре выходной обмотки предлагаемого генератора будет действовать ЭДС, т. к. линейный интеграл напряженности электрического поля вдоль замкнутого контура не будет равен нулю по причине наличия разности потенциалов, причем этот линейный интеграл и равен ЭДС, действующий в контуре.

Разность потенциалов в предложенном устройстве обеспечивается за счет разности линейных скоростей пересечения проводников активной части обмотки, что вызовет изменение потокосцепления, т.к. точки проводников, удаленные от оси ротора будут пересекаться с большей линейной скоростью, нежели точки проводников, находящихся ближе к оси ротора. Встречное направление магнитных потоков в магнитопроводах 12, разделенных воздушным промежутком 14 не имеет отрицательных последствий, т. к. магнитные цепи индуктора разделены. В предложенном устройстве генератора наведение встречной ЭДС исключается, а на выходных зажимах 16 образуется постоянная по величине и однонаправленная ЭДС.

Обмотка статора, образуя тороидальную катушку, имеет не только магнитный поток в теле магнитопроводящего сердечника, но и магнитное поле во внешней среде, которое и будет взаимодействовать с однополосным магнитным потоком индуктора, что подтверждает обратимость генератора (см. рис. 34,4 и 34,6 на стр. 471 и 473, Л. Эллиот и У.Уилкокс, перевод с английского, издание 2, "Физика", издательство "Наука", Главная редакция физико-математической литературы, Москва, 1967 г.).

Используя правило правой руки, мы убедимся, что направление ЭДС от правостороннего индуктора будет во всех элементах от центральной оси, а от левостороннего индуктора, наоборот, в сторону оси. Это дает возможность создать последовательную цепочку из всех элементов обмотки выходного напряжения. Скрещивание соединительных проводников 18 по малому диаметру магнитопровода показано условно, т.к. в разрезе генератора невозможно полностью изобразить схему, а фактически его не будет. Это видно по фиг. 4.

Магнитное поле, создаваемое одноименнополюсными постоянными магнитами, будет вращающимся, т. к. каждый из них имеет свою ось намагничивания и совершает круговое движение во времени и пространстве, что подтверждается а.с. N 118302 (4).

Устройство фактически состоит их двух, совмещенных в одном изделии генераторов, работающих на одну обмотку выходного напряжения. Постоянный электрический ток образуется без средств коммутации и при отсутствии скользящих контактов, как в выходной цепи, а также и в цепи возбуждения.

Генератор выполнен с однонаправленным магнитным потоком, не изменяемым по величине и по направлению. ЭДС в активных элементах обмотки возникает по закону электромагнитной индукции в трактовке М.Фарадея, т.е. в зависимости от разности скоростей пересечения проводника по его длине магнитным потоком согласно формулы:

Все величины в этой формуле, как магнитная индукция - В, длина проводника - l и скорость - V являются постоянными величинами. Работа встречных одноименных магнитных потоков, магнитопроводы которых разделены воздушным промежутком, в практике применяется и вполне возможна (4).

Предлагаемый генератор может быть изготовлен мощностью до 10 кВт, напряжением до 500 В. Получаемое постоянное напряжение будет тем больше, чем больше последовательно соединенных активных элементов обмотки. Замена подвижных обмоток выходного напряжения на неподвижные с исключением из них множественных контактных колец с щетками токосъема существенно повышает надежность работы устройства, а замене кольцевых катушек возбуждения на постоянные магниты обеспечивает самовозбуждение генератора и создает лучшие условия для увеличения МДС с обеспечением равномерности магнитной индукции. В качестве первичного двигателя может быть использована энергия ветра, воды, двигатель внутреннего сгорания или электродвигатель.

Устройство может быть использовано в промышленности для электросварки, электролиза, зарядки аккумуляторных батарей, питания электродвигателей, для целей электротяги и на другие цели. Изложенные выше примеры не исчерпывают всех случаев применения предлагаемого генератора, а являются лишь иллюстрацией.

Устройство работает следующим образом: при вращении вала 5 генератора постоянные магниты 9 создают ЭДС в рабочей обмотке выходного напряжения. Таким образом, происходит самовозбуждение генератора. С набором оборотов генератор переходит из пускового режима в нормальный рабочий режим.

Предложенное устройство имеет существенное преимущество как перед традиционными коллекторными, а так же и перед униполярными машинами, т.к. не имеет контактов и коллекторных узлов в выходной цепи и в схеме возбуждения. Является простым, более удобным для разборки и сборки. Изменение устройства прототипа согласно принятому техническому решению обеспечивает возможность осуществления изобретения с получением положительного эффекта, а именно: повысить надежность работы генератора за счет устранения скользящих контактов с щетками как из выходной электрической цепи, а так же и из схемы возбуждения и выполнить самовозбуждение генератора. Дополнительным положительным эффектом является улучшение эксплуатации, т.к. не требуются профилактические мероприятия по контролю за щеточно-контактными узлами.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Самовозбуждающийся бесколлекторный , содержащий статор с зубчатым магнитопроводом, якорь с обмоткой выходного напряжения, соединенной в последовательную цепочку, и индуктор, отличающийся тем, что обмотка выходного напряжения выполнена неподвижной, а ее активные элементы размещены аксиально в пазах кольцевого магнитопровода статора, выполненного полым, а индуктор выполнен сдвоенным и снабжен обращенными встречно одноименнополюсными постоянными магнитами.




Top