Автоматическое включение резервного электропитания (АВР). Автоматический переключатель питания

Ни одно электронное устройство не может быть застраховано от внезапного пропадания питания. Особенно, если речь идёт о сетевом напряжении 220 В и дело происходит в сельской местности. Для повышения надёжности стараются предусмотреть запасной источник энергии. В идеальном случае он должен при аварии автоматически включаться в работу, причём самостоятельно, без участия человека.

Для резервирования обычно используют сменные батареи и аккумуляторы. При батарейном питании желательно применять «алкалиновые» гальванические элементы (Alkaline). Они имеют большую ёмкость, низкий саморазряд, правда, и по цене дороже. Отличить, что есть что, можно по маркировке на корпусе, например, «R6» (обычная батарея типоразмера АА) и «LR6» (то же самое, но Alkaline).

Специфика современных МК заключается в том, что они могут программно переходить в энергосберегающий ждущий режим SLEEP с очень малым потреблением тока. Это позволяет вместо батарей/аккумуляторов использовать электролитические конденсаторы большой ёмкости или, ещё лучше, ионисторы.

Первые ионисторы были разработаны в 1966 г. фирмой Standard Oil Company. Они представляют собой специальные накопительные конденсаторы с органическим электролитом. Типовая ёмкость достигает 0.1...50 фарад при рабочем напряжении 2... 10 В. Для справки, ёмкость Земли (шара размером с Землю, как уединённого проводника) составляет всего лишь 0.0007 фарад.

Ионисторы известны в зарубежной технической литературе как конденсаторы с двойным электрическим слоем (Double-Layer capacitors), суперконденсаторы (SuperCaps), резервные конденсаторы (Backup capacitors). Встречаются и фирменные названия: UltraCap (EPCOS), Gold Capacitors (Panasonic), DynaCap (ELNA), BOOSTCAP (Maxwell Technologies). В странах СНГ используется устойчивый термин «ионистор», отражающий другую особенность этих приборов — участие ионов в формировании заряда.

Современные ионисторы условно делятся на три группы в зависимости от рекомендуемого в даташите длительного тока нагрузки:

  • Low current (низкий ток, меньше 1.5 мкА);
  • Medium current (средний ток, от 1.5 мкАдо 10 мА);
  • High current (большой ток, от 10 мА до 1 А).

Рабочее напряжение ионисторов подчиняется ряду: 2.5; 3.3; 5.5; 6.3 В.

На Рис. 6.16, а...т показаны схемы организации бесперебойного питания.

Рис. 6.16. Схемы организации бесперебойного питания (начало):

а) диоды VDI, VD2 служат для развязки каналов, чтобы ток из основного источника не перетекал в резервный, и наоборот. Если два источника питания разные по величине, то основным будет канал с более высоким напряжением. При абсолютном равенстве питающих напряжений диод Шоттки в резервном канале следует заменить обычным кремниевым диодом 1N4004.

б) развязывающие диоды VDI, VD2 включаются до (а не после) стабилизатора напряжения DA 1. Основное питание поступает через обычный диод VD1 (чтобы на нём рассеивалось побольше мощности), а резервное батарейное — через диод Шоттки VD2 (чтобы напряжение на входе стабилизатора DA I было как можно выше);

в) диоды VD2...VD4 включаются после (а не до) стабилизатора DA 1;

г) диод VD2 позволяет организовать дополнительный источник отрицательного напряжения -0.7 В, который, однако, перестаёт функционировать с переходом на резервное питание от батареи GB1. Диод Шоттки VD1 можно заменить обычным кремниевым диодом КД102А;

д) ионистор С J позволяет «на ходу» производить замену истощившихся батарей GBl, GB2, не прерывая питание МК достаточно длительное время. Если напряжение на ионисторе снижается медленно, то М К не требует рестарта. Резистор RI ограничивает ток заряда ионистора;

Рис. 6.16. Схемы организации бесперебойного питания (продолжение):

е) стабилизатор DAI ограничивает начальный ток заряда резервного ионистора СЗ на уровне не более 100 мА. Для справки, большой ток, начиная примерно с 250 мА, может повредить иони-стор. Диод VDI снижает выходное напряжение на 0.2 В. Кроме того, при отключении основного питания он не даёт разряжаться ионистору СЗ через выходные цепи внутри стабилизатора DA1

ж) транзистор VT1 выполняет функцию развязывающего диода наравне с «настоящим» диодом VD1, но имеет меньшее падение напряжения «коллектор — эмиттер» в открытом состоянии (0.1...0.15 В вместо 0.2 В). Основное питание +5 В(1), резервное питание +5 В(2);

з) аналогично Рис. 6.16, ж, но на полевом транзисторе VT1, при этом падение напряжения на открытом переходе «сток — исток» будет меньше, чем у биполярного транзистора при прочих равных условиях;

и) накопительный конденсатор C1 поддерживает некоторое время работоспособность МК при отключении батареи GB1. Длительность аварийного функционирования зависит от ёмкости и тока утечки конденсатора C1, а также от тактовой частоты МК и его способности устойчиво работать при пониженном питании;

к) благодаря диодному мосту VDI... VD4, входное напряжение 9... 12 В может быть как постоянным (DC), так и переменным (АС);

Рис. 6.16. Схемы организации бесперебойного питания (продолжение): л) резервный ионистор С2 некоторое время поддерживает напряжение в цепи +4.8 В (к которой подключается МК) при снятии основного питания +11 В от сетевого источника. Транзисторы VTI, VT2 не дают разряжаться ионистору через внутреннее сопротивление микросхемы DAI и нагрузку в цепи +5 В;

м) светодиод HL1 индицирует питание только в том случае, когда работает резервная батарея GB1. Резистором R1 устанавливается требуемая яркость свечения. При замыкании контактов переключателя SAI питание поступает от основного источника +5 В, при этом диод VD1 и транзистор VT1 закрываются и светодиод HL1 гаснет;

н) основной канал питания — это пальчиковые батареи GBl, GB2, а резервный канал — литиевый аккумулятор GB3. При отключённых батареях GBl и GB2 МК будет получать питание от аккумулятора GB3, находясь в дежурном режиме, поскольку внешние исполнительные устройства (цепь +3.2 В) будут обесточены. Диод VD1 не позволяет разряжаться аккумулятору GB3 через нагрузку, подключённую к цепи +3.2 В;

о) в исходном состоянии питание устройства производится от трёх батарей GB1...GB3, при этом индикатор HL1 светится зелёным цветом. При подаче внешнего питания +5 В срабатывает реле К1, контакты К1.1 замыкаются, батареи отключаются, индикатор HL1 светится красным цветом. Если вместо красного наблюдается жёлтый цвет индикатора, то следует последовательно с выводом «G» светодиода включить диод типа КД522Б катодом к HL1. Резистор R1 уменьшает ток потребления по цепи +5 В, однако, при неустойчивом срабатывании реле этот резистор можно заменить перемычкой; О

Рис. 6.16. Схемы организации бесперебойного питания (окончание): п) резервный аккумулятор GB1 постоянно подзаряжается небольшим током через резистор R1. Стабилитрон VD6 совместно с диодом VD7 ограничивают напряжение на аккумуляторе на уровне +13.7 В. Диоды VD4, VD5 открываются только при снятии основного питания +16 В. Диоды VD3, VD8 небходимы, поскольку ёмкость конденсаторов на выходе стабилизаторов DAI, DA2 больше, чем на входе (сравнить C1 и CJ, СЗ и С4)

р) питание +5 В является основным, а питание от литиевой батареи/аккумулятора GBI — резервным. На выход OUT поступает большее из двух напряжений, подаваемых на входы VCC и ВАТ микросхемы DA1. При снижении напряжения на выводе VCC ниже +4.75 В (подстраивается резистором R2), на выходе PFO формируется НИЗКИЙ уровень. Это система раннего предупреждения о неполадках в питании, чтобы МК мог переключиться на резервный источник. При снижении напряжения на выводе VCC ниже +4.65 В, генерируется импульс сброса RES;

с) аналогично Рис. 6.16, р, но с резервным питанием от ионистора C1. Сигнал сброса RES поступает на вход прерывания INT, поскольку аппаратно сбрасывать МК не обязательно из-за плавного снижения напряжения OUT;

т) ВЫСОКИМ/НИЗКИМ уровнем с выхода МК питание коммутируется или от цепи +5 В, или от резервного аккумулятора GB1, который подзаряжается небольшим током через элементы VDI, R4. При пропадании питания +5 В аккумулятор GB1 включается автоматически, при этом в МК надо произвести сброс, поскольку он может «зависнуть» при резком скачке напряжений.

Периодические отключения электричества способны вывести из строя всю систему отопления и повлиять на работу бытовой техники. Организация резервного питания дома только на первый взгляд сложная задача. В этой статье мы расскажем вам, как самостоятельно организовать резервное электроснабжение дома.

Практически в любом хозяйстве можно найти ряд устройств, которые было бы неплохо обеспечить резервным питанием. Сюда можно отнести холодильник, водонасосное оборудование, отопительный котел, компьютеры и устройства телефонии. Внезапно прерванная подача питания или скачки напряжения сокращают срок работы двигателей, возможен выход из строя блоков питания электронных устройств.

Существует два способа снизить влияние городской электросети на ритм своего быта. Для этого используют или источники бесперебойного питания (ИБП), или аварийные электрические генераторы .

Использование ИБП в домашнем хозяйстве

Почти все современные настольные компьютеры снабжены блоками бесперебойного питания для защиты от потери данных. Схожие по устройству приборы, но более мощного класса, могут быть использованы для питания бытовой техники во время аварийного обесточивания. Специфика их использования распространяется вплоть до организации аккумуляторных хранилищ, способных обеспечить весь дом электроэнергией в течение одного-двух дней.

И все же в быту наиболее широко применяются ИБП, защищающие отдельный потребитель или несколько, объединенных в выделенную линию, к которой может быть подключена также котельная или дежурное освещение. Это в корне меняет план электроснабжения дома, может потребоваться прокладка дополнительной проводки.

Инверторная система бесперебойного питания: 1 — сеть; 2 — батарейный инвертор; 3 — аккумуляторный банк; 4 — потребители

Перед приобретением ИБП следует составить список аварийных потребителей и рассчитать их мощность, потребляемую за наиболее продолжительный период, на который возможно отключение энергии. При этом обязательно учитывается как режим работы оборудования, так и прошлые опыты простоя без электричества.

Например, в резервном питании нуждаются:

  1. Холодильник — 400 Вт, время работы — 6 ч.
  2. Циркуляционный насос — 95 Вт, время работы — 24 ч.
  3. Газовый котел и автоматика котельной — 85 Вт, время работы — 24 ч.
  4. Зарядка ноутбука и телефонов — 200 Вт, время работы — 4 ч.

Таким образом, можно определить общее потребление приборов: 2,4 + 2,28 + 2,04 + 0,8 = 7,52 кВт/ч в сутки. Чтобы учесть и компенсировать временную деградацию аккумуляторов ИБП, к этому значению нужно добавить 30%, в итоге необходимая суточная емкость батареи ИБП составит почти 9,8 кВт/ч. Сделав поправку на время аварийной работы, вы получите необходимую мощность устройства. Учитывайте, что устройства такого класса мощности весьма дорогостоящие и делать дополнительный запас мощности не всегда нужно: поскольку ИБП не будет работать под полной нагрузкой, расчетной емкости хватит вполне.

Конфигурации защищенных сетей

При необходимости организовать резервное питание одному-двум потребителям, разумно использовать локальные ИБП. Так не потребуется переделка проводки в доме, нужно только корректно выбрать место установки прибора, а он довольно громоздкий.

В целом при нагрузке свыше 3 кВА/ч имеет смысл устанавливать одно устройство резервного питания для всех потребителей, организовав для них выделенную линию. Покупка одного мощного ИБП выгоднее нескольких менее мощных, в этом случае расходы на монтаж новой проводки вполне оправданы.

Другой плюс высокомощных ИБП — возможность самостоятельно определить режим и характеристики выходного тока для более продолжительной автономной работы. Встроенный контроллер заряда в таких устройствах существенно продлевает жизнь батарей и поддерживает их в полной готовности даже во время длительного простоя. Большинство устройств имеют интерфейс связи с ПК для отслеживания журнала работы и диагностики, а встроенный стабилизатор напряжения исключит скачки напряжения и сетевые помехи.

Длительная автономная работа — подключаем генератор

Есть два пути повышения времени автономной работы: наращивание парка аккумуляторных батарей и использование автономного источника электроэнергии. Первый вариант более дорогостоящий и использовать его следует лишь в тех условиях, где установка ДВС-генератора невозможна, например, в квартирах или офисах. Возникает спорный вопрос: а зачем нужен ИБП при наличии генератора?

Практика показывает, что параллельное использование этих устройств имеет свои плюсы:

  1. Электроснабжение осуществляется абсолютно беспрерывно.
  2. Характеристики тока, генерируемого портативными электростанциями, далеки от идеальных. Стабилизатор ИБП сглаживает помехи, имеет УЗИП электронного типа.
  3. При работе от генератора не нужны устройства высокого класса мощности, достаточно чтобы они соответствовали пиковой нагрузке при одновременно включенных потребителях. В случае, рассмотренном выше, будет достаточно ИБП мощностью 1 кВА/ч.

В отдельных случаях имеет смысл использовать генераторы с функцией автозапуска. В момент перехода на питание от аварийного генератора и при возникновении нештатных ситуаций (генератор заглох, кончилось топливо), питание переключается на ИБП. В нормальном же режиме генерируемого электричества будет достаточно для поддержки полного заряда батарей и включения всех потребителей в работу.

Гибридная система бесперебойного питания: 1 — сеть; 2 — инвертор; 3 — генератор; 4 — аккумуляторный банк; 5 — потребители

Построение схемы на многофункциональном АВР

Комфорт от применения ИБП достаточно высок, чтобы многие владельцы задумались о резервном питании всей электросети, а не отдельных потребителей. Для этого также есть несколько путей решения.

При невозможности установить генератор функцию резервного питания на себя берет сборка аккумуляторных батарей достаточной емкости. Тип аккумулятора определяется режимом работы: гелиевые имеют наибольшую цикличность и рассчитаны на частые включения, свинцово-кислотные AGM-аккумуляторы дешевле, их оптимально использовать для работы в режиме байпаса.

Аккумуляторный парк собирается из нескольких параллельно подключенных необслуживаемых аккумуляторов емкостью в 100-200 А/ч. Суммарная емкость парка должна соответствовать общему энергопотреблению в пересчете на низкое напряжение, то есть в рассмотренном выше случае потребление приборов от сети 230 В составило 9,8 кВт/ч или кВА/ч. При напряжении 12 В это эквивалентно общему потреблению в 816 А/ч, так определяется суммарная емкость парка. При сборке нужно учитывать также собственное энергопотребление системы и потери в проводах низкого напряжения, это примерно 5-7% от первоначальной мощности. Все функции по управлению системой бесперебойного питания берет на себя инвертор с электронным управлением. Стоимость устройства надлежащего качества (MeanWell) на 1 кВт пиковой мощности составляет 400-600 $, от 3 до 5 кВт — 1200-1400 $. К слову, комплексные устройства с теми же параметрами обходятся как минимум в 2-3 раза дороже.

Резервная система с блоком АВР: 1 — сеть; 2 — генератор; 3 — аккумуляторный банк; 4 — щит автоматического ввода резерва (АВР); 5 — многофункциональный инвертор; 6 — потребители

При наличии генератора аккумуляторный парк можно существенно сократить до одного-двух часов бесперебойной работы. Но потребуется установка устройства АВР с функцией запуска генератора. Подойдут и простейшие щиты отечественного производства, такие как ЩАПг-3-1-50 «Техэнерго» (~20 000 руб.) или сборки АВР самостоятельного исполнения.

Могла сработать только тогда, когда пропадало напряжение основного источника, от понижение или повышения напряжения защитить нагрузку не могло. В новом варианте устройства были исправлены эти недочёты, а именно:

  1. Устройство не переключит нагрузку на резервный источник питания при наличии даже пониженного напряжения основного источника.
  2. Устройство не способно работать при напряжении менее 6-ти вольт.

    Устройство не защитит нагрузку при повышении напряжения сверх допустимой величины.

Новый вариант устройства обладает значительно улучшенными характеристиками.

    Способно работать при входном напряжении основного источника от 6 до 15 в.

    Защита нагрузки от пониженного или повышенного напряжения. Для контроля напряжения основного источника используются два компаратора. При отключении основного источника напряжения, работа устройства аналогична его предыдущей версии.

    Ток потребляемый нагрузкой ограничен только максимальным током, который могут выдержать контакты применяемого электромагнитного реле.

Питается устройство от резервного источника питания на 12 в и потребляет ток около 100 ма, в случае если напряжение основного источника меньше 12-ти вольт, нужно применить стабилизатор и включить его в разрыв показанный на схеме, а также установить пороги срабатывания защиты построечными резисторами.

Работа устройства

Напряжение основного источника поступает на резисторы R6 и R12 с которых напряжение поступает на входы компараторов, где сравнивается с напряжением поступающим со стабилизатора VR1. Отдельный стабилизатор VR1 применён для того, чтобы при изменении величины напряжения резервного источника питания не менялись пороги срабатывания защиты. Кратко опишу для чего предназначены эти подстроечные резисторы. Резистор R12 отвечает за срабатывание защиты при падении напряжения ниже минимального порога, который этим резистором выставляется. В моём случае этот порог 10.5 вольт и для того, чтобы его выставить, нужно при входном напряжении 10.5 вольт с помощью этого резистора выставить на выводе 7 компаратора напряжение 1.3в, что ниже порога срабатывания компаратора, так как на 6 ноге микросхемы напряжение 1.65 вольта, сразу же сработает защита. Резистор R6 отвечает за срабатывание защиты в случае критического повышения напряжения основного источника. В моём случае величина максимального напряжения установлена на уровне 13 вольт. При этом напряжении резистором R6 необходимо выставить на 5-й ноге микросхемы напряжение 4 вольта, что приведёт к срабатыванию защиты и переключению нагрузки на резервный источник. Благодаря этим резисторам защита срабатывает при понижении напряжения до 10.5 вольт, или повышении до 13.

Самой интересной частью схемы является узел собранный на микросхемах DD1 и DD2. Он собственно и является схемой защиты. Два входа этого узла подключены к компараторам, но для того, чтобы на выводе 8 микросхемы DD1 появился уровень логической 1 и сработала защита должны быть созданы определённые условия. Данный узел интересен ещё и тем, что логическая единица на выходе 8 DD1.1 появится при наличии одинаковых логических состояний на входах, либо два 0 , либо две 1. Если на одном входе будет 1, а на другом 0, то защита не сработает.

Работает схема защиты следующим образом. При нормальном входном напряжении основного источника работает только компаратор DA1.2, так как напряжение выше минимального порога отключения и следовательно открытый выходной транзистора компаратора DA1.2 замыкает выводы 4 и 5 элемента DD2.4 на массу, что аналогично состоянию логического 0, а на входах 1 и 2 элемента DD2.3 действует напряжение около 4.5 - 5 вольт, что аналогично состоянию логической 1, так как напряжение не достигает 13 вольт и компаратор DA1.1 не работает. При таком условии защита не сработает. При повышении напряжения основного источника до 13 вольт начинает работать компаратор DA1.1, открывается выходной транзистор и замыкая входы 1 и 2 DD2.3 на массу принудительно создаёт уровень логического 0, тем самым на обоих входах принудительно появляется уровень логического 0 и срабатывает защита. Если напряжение упало ниже минимального порога, то напряжение подводимое к 7-й ноге компаратора падает до уровня ниже 1.65 вольта, выходной транзистор закроется и перестанет замыкать входы 4 и 5 элемента DD2.4 на массу, что приведёт к установлению на входах 4 и 5 напряжения 4.5 - 5 вольт(уровень 1). Поскольку DA1.1 уже не работает и DA1.2перестал, то создаётся условие при котором уровень логической единицы появится на обоих входах узла защиты и она сработает. Подробнее работа узла показана в таблице. В таблице показаны логические состояния на всех выводах микросхем.

Таблица логических состояний элементов узла.

Налаживание устройства

Правильно собранное устройство требует минимальной наладки, а именно установки порогов срабатывания защиты. Для этого необходимо вместо основного источника напряжения подключить к устройству регулируемый блок питания и с помощью подстроечных резисторов выставить пороги срабатывания защиты.

Внешний вид устройства

Расположение деталей на плате устройства.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1, DD2 Логическая ИС

К155ЛА3

2 В блокнот
DA1 Компаратор

LM339-N

1 В блокнот
VR1, VR2 Линейный регулятор

LM7805

2 В блокнот
VT1 Биполярный транзистор

КТ819А

1 В блокнот
Rel 1 Реле RTE24012 1 В блокнот
R1 Резистор

3.3 кОм

1 В блокнот
R2, R3 Резистор

1 кОм

2

Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

Рис. 10.1. Основная схема резервирования источников питания

Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

Рис. 10.3. Схема резервирования источника питания охранного устройства

Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
использование резервного источника питания. Схема одного из них показана на рис. 10.5.
Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
В схеме использовано реле РЭС-64А РС4.569.724.
Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

Рис. 10.7. Схема автоматического коммутатора питания

Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

Рис. 10.8. Комбинированный блок питания электронно-механических часов

При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

Рис. 10.9. Схема резервированного питания электронных часов

С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

Рис. 10.10. Схема низковольтного источника бесперебойного питания

Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

Через диод VD7 и резистор R4 устройство подключено к ИР/7.
При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

Для обеспечения надежной работы многих стационарных устройств необходимо применять резервное питание. Чаще всего для этих целей устанавливают аккумулятор, но за ним надо следить, не допуская сильного разряда и вовремя ставить на подза- ряд. Удобнее эту обязанность поручить автоматике.

Для подзаряда аккумулятора необходимо соответствующее устройство (внутреннее или внешнее). Зарядное устройство можно выполнить в составе системы бесперебойного питания и полностью автоматизировать процесс, т. е. оно может включаться при снижении напряжения на аккумуляторе ниже порогового уровня , или же применить «плавающий» подзаряд . Под плавающим зарядом подразумевают подключение аккумулятора параллельно с нагрузкой (рис. 2.18), когда источник питания служит только для компенсации токов саморазряда в элементах питания. В этом случае схема получается наиболее простой.

В этих схемах поступающее напряжение с трансформатора выбирается таким, чтобы зарядный ток, проходящий через аккумулятор, компенсировал ток естественного саморазряда. Нужное напряжение после выпрямителя можно подобрать экспериментально установкой дополнительных диодов или с помощью отводов от вторичной обмотки трансформатора (у некоторых унифицированных трансформаторов, например из серии TH, ТПП и др., есть возможность немного изменить напряжение во вторичной цепи за счет переключения отводов в первичной обмотке). При этом контролируем ток в цепи аккумулятора по амперметру. Обычно значение тока «плавающего» подзаряда не должно превышать 0,005…0,01 номинального для аккумулятора. Уменьшение тока заряда приводит только к увеличению продолжительности процесса (в данном применении время заряда значения не имеет - оно всегда будет достаточным).

Такие схемы можно применять, если ваша сеть достаточно стабильна и питающее напряжение не выходит за рамки допуска

Рис. 2.18. Схемы, обеспечивающиеплавающийподзаряд аккумулятора резервного питания

(в крупных городах за этим следят). В противном случае между трансформатором и аккумулятором устанавливается стабилизатор напряжения и диод, препятствующий прохождению тока аккумулятора в стабилизатор, когда трансформатор не включен (рис. 2.19). Микросхема KP142EH12 может быть заменена аналогичной импортной LM317.

Рис. 2.19. Схема зарядного устройства со стабилизатором напряжения

Более совершенная схема зарядного устройства приведена на рис. 2.20. Она не только поддерживает стабильное напряжение на

аккумуляторе, но и имеет настраиваемую токовую защиту, которая предотвращает повреждение элементов в случае короткого замыкания на выходе (или неисправности аккумулятора). Ограничение тока полезно и в тех случаях, когда подключается новый аккумулятор (еще не заряженный или сильно разряженный ранее). В этом случае ограничение тока на нужном уровне предотвращает перегрузку питающего сетевого трансформатора (он может быть маломощным - 14…30 Вт, так как в режиме «Тревога» необходимый ток вполне может обеспечить сам аккумулятор). Кроме того, внутри микросхемы есть температурная защита, отключающая ее выход при перегреве, что исключает повреждение компонентов.

Для сборки устройства можно воспользоваться односторонней печатной платой из стеклотекстолита, показанной на рис. 2.21, ее внешний вид приведен на рис. 2.22.

При монтаже применялись детали C1 - любой оксидный, С2-С4 - из серии K10. Подстроечный резистор R4 - многооборотный СП5-2В. В качестве микросхемы можно использовать любые из серии K142EH3 или K142EH4 - они имеют планарные выводы. Для установки микросхемы со стороны печатных проводников, в плате сделано окно размером 15 x 10 мм и отверстия для ее крепления. Между пластиной теплоотвода микросхемы и платой подкладываются диэлектрические шайбы так, чтобы выводы легли прямо на токопроводящие дорожки. Это позволит ко всей плоскости микросхемы закрепить отводящую тепло пластину.

Рис. 2.21. Топология печатной платы и расположение элементов

Рис. 2.22. Внешний вид монтажа элементов на плате

Трансформатор (T1) можно заменить на ТП115-K9 - он имеет 2 обмотки по 12 В с допустимым током до 0,8 А. В холостом ходу на обмотке будет напряжение 16 В, а после выпрямления и сглаживания конденсатором - 19 В, что вполне достаточно для работы стабилизатора (основную часть времени схема будет работать как раз в режиме хрлостого хода).

Работающая аналогично еще одна схема приведена на рис. 2.2,3- Основой ее является микросхема L200 (отечественных аналогов нет), имеющая выводы (2 и 5) для контроля тока в нагрузке. Приреденное включение микросхемы является типовым: от номинала резистора В2 зависит максимальный ток в цепи нагрузки (Lax = 0,45/R2), а нужное напряжение выставляется резистором R3. Стабилизатор может обеспечить выходной ток от 0,1 до 2 А и имеет внутреннюю защиту от перегрева.

Рис. 2.23. Второй вариант схемы зарядного устройства с ограничением тока

Для монтажа элементов второй схемы зарядного устройства можно воспользоваться печатной платой, показанной на рис. 2.24.

О настройке всех схем со стабилизацией. Вам потребуется миллиамперметр, вольтметр (лучше цифровой) и имитирующий нагрузку мощный резистор. Все это соединяется no схеме, показанной на рис. 2.25.

Сначала при отключенном аккумуляторе соответствующим подстроечным резистором выставляем на выходе стабилизатора напряжение 13 В, После этого переключателем S1 включаем резистор RH и проверяем ток ограничения. Его можно установить любым при помощи подбора резистора токовой обратной связи - R3 в схеме рис. 2.20 (например, для тока 220 мА - R3 = 3,9 Ом; для 300 мА - R3 = 3,3 Ом) или R2 в схеме на рис. 2.23.

Рис. 2.24. Топология печатной платы и внешний вид монтажа

Рис. 2.25. Стенддля настройки и проверки зарядногоустройства

Теперь вместо резистора RH подключаем аккумулятор GB1. Необходимый ток в цепи заряда (для энергоемкости конкрегного аккумулятора) устанавливаем подстройкой выходного напряжения. Окончательную установку следует делать уже после того, как аккумулятор полностью зарядится - этот ток должен компенсировать саморазрядОВ1.

Дополнительная литература

1. Кадино Э. Электронные системы охраны. Пер. с франц. - M.: ДМК Пресс, 2001,c. 11.

2. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 1. - M.: СОЛОН-Пресс, 2003, с. 84.

3. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 3. - M.: СОЛОН-Пресс, 2003, с. 133.

4. Сайт фирмы: http://www.dart.ru/index5.shtml?/cataloguenew/acoustics/oscillator.shtml

5. ХрусталевД. А. Аккумуляторы. - M.: Изумруд, 2003.




Top