Arduino ide какой язык программирования. Программирование Arduino

Из чего состоит программа

Для начала стоит понять, что программу нельзя читать и писать как книгу: от корки до корки, сверху вниз, строку за строкой. Любая программа состоит из отдельных блоков. Начало блока кода в C/C++ обозначается левой фигурной скобкой { , его конец - правой фигурной скобкой } .

Блоки бывают разных видов и какой из них когда будет исполняться зависит от внешних условий. В примере минимальной программы вы можете видеть 2 блока. В этом примере блоки называются определением функции . Функция - это просто блок кода с заданным именем, которым кто-то затем может пользоваться из-вне.

В данном случае у нас 2 функции с именами setup и loop . Их присутствие обязательно в любой программе на C++ для Arduino. Они могут ничего и не делать, как в нашем случае, но должны быть написаны. Иначе на стадии компиляции вы получите ошибку.

Классика жанра: мигающий светодиод

Давайте теперь дополним нашу программу так, чтобы происходило хоть что-то. На Arduino, к 13-му пину подключён светодиод. Им можно управлять, чем мы и займёмся.

void setup() { pinMode(13 , OUTPUT) ; } void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; digitalWrite(13 , LOW) ; delay(900 ) ; }

Скомпилируйте, загрузите программу. Вы увидите, что каждую секунду светодиод на плате помигивает. Разберёмся почему этот код приводит к ежесекундному миганию.

Каждое выражение - это приказ процессору сделать нечто. Выражения в рамках одного блока исполняются одно за другим, строго по порядку без всяких пауз и переключений. То есть, если мы говорим об одном конкретном блоке кода, его можно читать сверху вниз, чтобы понять что делается.

Теперь давайте поймём в каком порядке исполняются сами блоки, т.е. функции setup и loop . Не задумывайтесь пока что значат конкретные выражения, просто понаблюдайте за порядком.

    Как только Arduino включается, перепрошивается или нажимается кнопка RESET , «нечто» вызывает функцию setup . То есть заставляет исполняться выражения в ней.

    Как только работа setup завершается, сразу же «нечто» вызывает функцию loop .

    Как только работа loop завершается, сразу же «нечто» вызывает функцию loop ещё раз и так до бесконечности.

Если пронумеровать выражения по порядку, как они исполняются, получится:

void setup() { pinMode(13 , OUTPUT) ; ❶ } void loop() { digitalWrite(13 , HIGH) ; ❷ ❻ ❿ delay(100 ) ; ❸ ❼ … digitalWrite(13 , LOW) ; ❹ ❽ delay(900 ) ; ❺ ❾ }

Ещё раз напомним, что не стоит пытаться воспринимать всю программу, читая сверху вниз. Сверху вниз читается только содержимое блоков. Мы вообще можем поменять порядок объявлений setup и loop .

void loop() { digitalWrite(13 , HIGH) ; ❷ ❻ ❿ delay(100 ) ; ❸ ❼ … digitalWrite(13 , LOW) ; ❹ ❽ delay(900 ) ; ❺ ❾ } void setup() { pinMode(13 , OUTPUT) ; ❶ }

Результат от этого не изменится ни на йоту: после компиляции вы получите абсолютно эквивалентный бинарный файл.

Что делают выражения

Теперь давайте попробуем понять почему написанная программа приводит в итоге к миганию светодиода.

Как известно, пины Arduino могут работать и как выходы и как входы. Когда мы хотим чем-то управлять, то есть выдавать сигнал, нам нужно перевести управляющий пин в состояние работы на выход. В нашем примере мы управляем светодиодом на 13-м пине, поэтому 13-й пин перед использованием нужно сделать выходом.

Это делается выражением в функции setup:

PinMode(13 , OUTPUT) ;

Выражения бывают разными: арифметическими, декларациями, определениями, условными и т.д. В данном случае мы в выражении осуществляем вызов функции . Помните? У нас есть свои функции setup и loop , которые вызываются чем-то, что мы назвали «нечто». Так вот теперь мы вызываем функции, которые уже написаны где-то.

Конкретно в нашем setup мы вызываем функцию с именем pinMode . Она устанавливает заданный по номеру пин в заданный режим: вход или выход. О каком пине и о каком режиме идёт речь указывается нами в круглых скобках, через запятую, сразу после имени функции. В нашем случае мы хотим, чтобы 13-й пин работал как выход. OUTPUT означает выход, INPUT - вход.

Уточняющие значения, такие как 13 и OUTPUT называются аргументами функции . Совершенно не обязательно, что у всех функций должно быть по 2 аргумента. Сколько у функции аргументов зависит от сути функции, от того как её написал автор. Могут быть функции с одним аргументом, тремя, двадцатью; функции могут быть без аргументов вовсе. Тогда для их вызова круглые скобка открывается и тут же закрывается:

NoInterrupts() ;

На самом деле, вы могли заметить, наши функции setup и loop также не принимают никакие аргументы. И загадочное «нечто» точно так же вызывает их с пустыми скобками в нужный момент.

Вернёмся к нашему коду. Итак, поскольку мы планируем вечно мигать светодиодом, управляющий пин должен один раз быть сделан выходом и затем мы не хотим вспоминать об этом. Для этого идеологически и предназначена функция setup: настроить плату как нужно, чтобы затем с ней работать.

Перейдём к функции loop:

void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; digitalWrite(13 , LOW) ; delay(900 ) ; }

Она, как говорилось, вызывается сразу после setup . И вызывается снова и снова как только сама заканчивается. Функция loop называется основным циклом программы и идеологически предназначена для выполнения полезной работы. В нашем случае полезная работа - мигание светодиодом.

Пройдёмся по выражениям по порядку. Итак, первое выражение - это вызов встроенной функции digitalWrite . Она предназначена для подачи на заданный пин логического нуля (LOW , 0 вольт) или логической единицы (HIGH , 5 вольт) В функцию digitalWrite передаётся 2 аргумента: номер пина и логическое значение. В итоге, первым делом мы зажигаем светодиод на 13-м пине, подавая на него 5 вольт.

Как только это сделано процессор моментально приступает к следующему выражению. У нас это вызов функции delay . Функция delay - это, опять же, встроенная функция, которая заставляет процессор уснуть на определённое время. Она принимает всего один аргумент: время в миллисекундах, которое следует спать. В нашем случае это 100 мс.

Пока мы спим всё остаётся как есть, т.е. светодиод продолжает гореть. Как только 100 мс истекают, процессор просыпается и тут же переходит к следующему выражению. В нашем примере это снова вызов знакомой нам встроенной функции digitalWrite . Правда на этот раз вторым аргументом мы передаём значение LOW . То есть устанавливаем на 13-м пине логический ноль, то есть подаём 0 вольт, то есть гасим светодиод.

После того, как светодиод погашен мы приступаем к следующему выражению. И снова это вызов функции delay . На этот раз мы засыпаем на 900 мс.

Как только сон окончен, функция loop завершается. По факту завершения «нечто» тут же вызывает её ещё раз и всё происходит снова: светодиод поджигается, горит, гаснет, ждёт и т.д.

Если перевести написанное на русский, получится следующий алгоритм:

    Поджигаем светодиод

    Спим 100 миллисекунд

    Гасим светодиод

    Спим 900 миллисекунд

    Переходим к пункту 1

Таким образом мы получили Arduino с маячком, мигающим каждые 100 + 900 мс = 1000 мс = 1 сек.

Что можно изменить

Давайте пользуясь только полученными знаниями сделаем несколько вариаций программы, чтобы лучше понять принцип.

Вы можете подключить внешний светодиод или другое устройство, которым нужно «мигать» на другой пин. Например, на 5-й. Как в этом случае должна измениться программа? Мы должны всюду, где обращались к 13-му пину заменить номер на 5-й:

Компилируйте, загружайте, проверяйте.

Что нужно сделать, чтобы светодиод мигал 2 раза в секунду? Уменьшить время сна так, чтобы в сумме получилось 500 мс:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(450 ) ; }

Как сделать так, чтобы светодиод при каждом «подмигивании» мерцал дважды? Нужно поджигать его дважды с небольшой паузой между включениями:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(50 ) ; digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(350 ) ; }

Как сделать так, чтобы в устройстве были 2 светодиода, которые мигали бы каждую секунду поочерёдно? Нужно общаться с двумя пинами и работать в loop то с одним, то с другим:

void setup() { pinMode(5 , OUTPUT) ; pinMode(6 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; digitalWrite(6 , HIGH) ; delay(100 ) ; digitalWrite(6 , LOW) ; delay(900 ) ; }

Как сделать так, чтобы в устройстве были 2 светодиода, которые переключались бы на манер железнодорожного светофора: горел бы то один то другой? Нужно просто не выключать горящий светодиод тут же, а дожидаться момента переключения:

void setup() { pinMode(5 , OUTPUT) ; pinMode(6 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; digitalWrite(6 , LOW) ; delay(1000 ) ; digitalWrite(5 , LOW) ; digitalWrite(6 , HIGH) ; delay(1000 ) ; }

Можете проверить другие идеи самостоятельно. Как видите, всё просто!

О пустом месте и красивом коде

В языке C++ пробелы, переносы строк, символы табуляции не имеют большого значения для компилятора. Там где стоит пробел, может быть перенос строки и наоборот. На самом деле 10 пробелов подряд, 2 переноса строки и ещё 5 пробелов - это всё эквивалент одного пробела.

Пустое пространство - это инструмент программиста, с помощью которого можно или сделать программу понятной и наглядной, или изуродовать до неузнаваемости. Например, вспомним программу для мигания светодиодом:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Мы можем изменить её так:

void setup( ) { pinMode(5 , OUTPUT) ; } void loop () { digitalWrite(5 ,HIGH) ; delay(100 ) ; digitalWrite(5 ,LOW) ; delay(900 ) ; }

Всё, что мы сделали - немного «поработали» с пустым пространством. Теперь можно наглядно видеть разницу между стройным кодом и нечитаемым.

Чтобы следовать негласному закону оформления программ, который уважается на форумах, при чтении другими людьми, легко воспринимается вами же, следуйте нескольким простым правилам:

1. Всегда, при начале нового блока между { и } увеличивайте отступ. Обычно используют 2 или 4 пробела. Выберите одно из значений и придерживайтесь его всюду.

Плохо:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Хорошо:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

2. Как и в естественном языке: ставьте пробел после запятых и не ставьте до.

Плохо:

DigitalWrite(5 ,HIGH) ; digitalWrite(5 , HIGH) ; digitalWrite(5 ,HIGH) ;

Хорошо:

DigitalWrite(5 , HIGH) ;

3. Размещайте символ начала блока { на новой строке на текущем уровне отступа или в конце предыдущей. А символ конца блока } на отдельной строке на текущем уровне отступа:

Плохо:

void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; }

Хорошо:

void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; }

4. Используйте пустые строки для разделения смысловых блоков:

Хорошо:

Ещё лучше:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; digitalWrite(6 , HIGH) ; delay(100 ) ; digitalWrite(6 , LOW) ; delay(900 ) ; }

О точках с запятыми

Вы могли заинтересоваться: зачем в конце каждого выражения ставится точка с запятой? Таковы правила C++. Подобные правила называются синтаксисом языка . По символу; компилятор понимает где заканчивается выражение.

Как уже говорилось, переносы строк для него - пустой звук, поэтому ориентируется он на этот знак препинания. Это позволяет записывать сразу несколько выражений в одной строке:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Программа корректна и эквивалентна тому, что мы уже видели. Однако писать так - это дурной тон. Код гораздо сложнее читается. Поэтому если у вас нет 100% веских причин писать в одной строке несколько выражений, не делайте этого.

О комментариях

Одно из правил качественного программирования: «пишите код так, чтобы он был настолько понятным, что не нуждался бы в пояснениях». Это возможно, но не всегда. Для того, чтобы пояснить какие-то не очевидные моменты в коде его читателям: вашим коллегам или вам самому через месяц, существуют так называемые комментарии.

Это конструкции в программном коде, которые полностью игнорируются компилятором и имеют значение только для читателя. Комментарии могут быть многострочными или однострочными:

/* Функция setup вызывается самой первой, при подаче питания на Arduino А это многострочный комментарий */ void setup() { // устанавливаем 13-й пин в режим вывода pinMode(13 , OUTPUT) ; } void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; // спим 100 мс digitalWrite(13 , LOW) ; delay(900 ) ; }

Как видите, между символами /* и */ можно писать сколько угодно строк комментариев. А после последовательности / / комментарием считается всё, что следует до конца строки.

Итак, надеемся самые основные принципы составления написания программ стали понятны. Полученные знания позволяют программно управлять подачей питания на пины Arduino по определённым временны́м схемам. Это не так уж много, но всё же достаточно для первых экспериментов.

Основа языка программирования модуля Arduino - это язык Си (скорее Си++). Ещё точнее, этот диалект языка называется Processing/Wiring. Хорошее обозрение языка вы найдёте в приложении. А мне хочется больше рассказать не о языке, а о программировании.

Программа - это некий набор команд, которые понимает процессор, процессор вашего компьютера или процессор микроконтроллера модуля Arduino, не суть важно. Процессор читает команды и выполняет их. Любые команды, которые понимает процессор - это двоичные числа. Это только двоичные числа и ничто иное. Выполняя арифметические операции, для которых процессор некогда и предназначался, процессор оперирует с числами. Двоичными числами. И получается, что и команды, и то, к чему они относятся, это только двоичные числа. Вот так. Но как же процессор разбирается в этой «куче» двоичных чисел?

Во-первых, все эти двоичные числа записываются в последовательные ячейки оперативной памяти, имеющие адреса. Когда вы загружаете программу, и она начинает работать, процессор получает первый адрес программы, где обязательно должна быть записана команда. Те команды, которые требуют от процессора операций с числами, имеют «опознавательные знаки», например, что в следующих двух ячейках памяти два числа, которые нужно сложить. А счётчик, назовём его счётчиком команд, где записан адрес следующей команды, в данном случае увеличивает адрес так, что в программе по этому адресу будет следующая команда. При неправильной работе программы или сбоях процессор может ошибиться, и тогда, прочитав вместо команды число, процессор делает совсем не то, что должен делать, а программа «зависает».

Таким образом, любая программа - это последовательность двоичных чисел. А программирование - это умение правильно записывать правильные последовательности двоичных чисел. Достаточно давно для записи программ стали использовать специальные средства, которые называются языками программирования.

Однако любая программа в первую очередь требует от вас ясного понимания того, что должна делать программа, и для чего она нужна. Чем яснее вы это понимаете, тем легче создать программу. Небольшие программы, хотя трудно сказать, какие программы небольшие, а какие нет, можно рассматривать целиком. Более сложные программы лучше разбить на части, которые можно рассматривать как самостоятельные программы. Так их лучше создать, легче отладить и проверить.

Я не готов спорить, но считаю, что программу удобнее начинать с описания на обычном языке. И в этом смысле я считаю, что программирование не следует путать с написанием кода программы. Когда программа описана обычными словами, вам легче определить, например, какой язык программирования выбрать для создания кода программы.

Ближе всего к записи программы с помощью двоичных чисел, язык ассемблер. Для него характерно соответствие команд языка двоичным командам, понятным процессору. Но кодирование программ на ассемблере требует больших усилий и ближе к искусству, чем к формальным операциям. Более универсальны и легче в применении языки высокого уровня, как Бэйсик или Си. И давно для записи программ в общем виде используют графический язык, а в последнее время появились и «переводчики» с этого языка на язык процессоров.

Кроме языков программирования общего применения, всегда существовала некоторая специализация языков программирования, и существовали специализированные языки. К последним я бы отнёс и язык программирования модуля Arduino.

Всё, что нужно сказать модулю, чтобы он сделал что-то нужное нам, организовано в удобный набор команд. Но вначале о том, что нам нужно от Arduino?

Модуль можно использовать в разных качествах - это и сердце (или голова) робота, это и основа прибора, это и удобный конструктор для освоения работы с микроконтроллерами и т.д.

Выше мы уже использовали простые программы для проверки подключения модуля к компьютеру. Кому-то они могут показаться слишком простыми, а поэтому не интересными, но любые сложные программы состоят из более простых фрагментов, похожих на те, с которыми мы уже знакомились.

Давайте посмотрим, о чём нам может рассказать самая простая программа «Помигать светодиодом».

int ledPin = 13;

pinMode (ledPin, OUTPUT);

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

Вначале вспомним, что такое светодиод. В сущности это обычный диод, у которого, благодаря его конструкции, при протекании тока в прямом направлении начинает светиться переход. То есть, чтобы светодиод светился, нужно чтобы через него протекал ток, а, значит, к светодиоду следует приложить напряжение. А чтобы ток не превысил допустимого значения, последовательно со светодиодом следует включить резистор, который называют токоограничительным (см. Приложение А, цифровой выход). Напряжение к светодиоду прикладывает микроконтроллер, составляющий основу модуля Arduino. У микроконтроллера, кроме процессора, выполняющего наши команды, есть один или несколько портов ввода-вывода. Не вдаваясь в рассмотрение конкретного устройства порта, скажем так - когда вывод порта работает на выход, его можно представить как выход цифровой микросхемы с двумя состояниями, включено и выключено (есть напряжение на выходе, нет напряжения на выходе).

Но этот же вывод порта может работать и как вход. В этом случае его можно представить, например, как вход цифровой микросхемы – на вход подаётся логический уровень, высокий или низкий (см. Приложение А, цифровой ввод).

Как мы мигаем светодиодом:

Включить выходной вывод порта. Выключить вывод порта.

Но процессор работает очень быстро. Мы не успеем заметить мигания. Чтобы заметить это мигание, нам нужно добавить паузы. То есть:

Включить выходной вывод порта. Пауза 1 секунда.

Выключить вывод порта.

Пауза 1 секунда.

Это наша программа. Процессор прочитает первую команду и включит вывод, светодиод загорится. Затем процессор сделает паузу в работе и выключить вывод, светодиод погаснет. Но он только один раз мигнул.

Повторение какого-либо процесса или набора команд называется в программировании циклом. Используются разные виды циклов. Есть цикл, который выполняется заданное число раз. Это цикл for. Есть циклы, которые выполняются до тех пор, пока не будет выполнено некоторое условие, которое является частью языковой конструкции цикла. А если условие не будет выполнено никогда, то цикл выполняется бесконечное число раз. Это бесконечный цикл.

Я не думаю, что микроконтроллеры используются с программами того вида, который приведён выше. То есть, один раз выполнено несколько команд и больше контроллер не работает. Как правило, он работает постоянно, как только на него подаётся питающее напряжение. А, значит, микроконтроллер должен работать в бесконечном цикле.

Именно об этом говорит функция void loop(), loop - это петля, замкнутый цикл. Условия прекращения работы цикла нет, а, следовательно, нет условия его завершения.

Кроме того, мы должны сообщить модулю Arduino, какой вывод порта и как мы хотим использовать, для выхода (OUTPUT) или для входа (INPUT). Этой цели служит функция void setup(), которая для языка Arduino является обязательной, даже если она не используется, и команда pinMode(), для задания режима работы вывода.

pinMode (ledPin, OUTPUT);

И ещё, языковая конструкция использует переменные для определения номера вывода:

int ledPin = 13;

Использование переменных удобно. Решив, что вы будете использовать не вывод 13, а 12, вы внесёте изменение только в одной строке. Особенно сильно это сказывается в больших программах. Имя переменной можно выбирать по своему усмотрению, но, как правило, оно должно быть только символьным, и часто количество символов ограничивается. Если вы неверно зададите имя переменной, думаю, компилятор вас поправит.

Функция digitalWrite (ledPin, HIGH) устанавливает заданный вывод в состояние с высоким уровнем, то есть включает вывод.

А delay (1000), как вы уже поняли, означает паузу в 1000 миллисекунд или 1 секунду.

Осталось понять, что означают такие приставки, как int, void. Любые значения, любые переменные размещаются в памяти, как и команды программы. В ячейки памяти записываются числа зачастую из 8 битов. Это байт. Но байт - это числа от 0 до 255. Для записи больших чисел нужно два байта или больше, то есть, две или больше ячеек памяти. Чтобы процессору было ясно, как отыскать число, разные типы чисел имеют разные названия. Так число по имени byte, займёт одну ячейку, int (integer, целое) больше. Кроме того, функции, используемые в языках программирования, тоже возвращают числа. Чтобы определить, какой тип числа должна вернуть функция, перед функцией записывают этот тип возвращаемого числа. Но некоторые функции могут не возвращать числа, такие функции предваряют записью void (см. Приложение А, переменные).

Вот, сколько интересного может рассказать даже самая простая программа.

Обо всём этом вы, надеюсь, прочитаете в приложении. А сейчас проделаем простые эксперименты, используя только то, что мы уже знаем из возможностей языка. Первое, заменим переменную типа int, которая занимает много места в памяти, на byte - одно место, одна ячейка памяти. Посмотрим, что у нас получится.

byte ledPin = 13;

pinMode (ledPin, OUTPUT);

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

После компиляции и загрузки программы в модуль мы не заметим изменений в работе программы. Хорошо. Тогда изменим программу так, чтобы заметить изменения в её работе.

Для этого мы заменим число в функции delay (1000) переменной, назвав её my_del. Эта переменная должна быть целым числом, то есть, int.

int my_del = 5000;

Не забывайте заканчивать каждую команду точкой с запятой. Внесите изменения в программу, скомпилируйте её и загрузите в модуль. Затем поменяйте переменную и повторите компиляцию и загрузку:

byte my_del = 5000;

Разница, уверен, получится ощутимая.

Проделаем ещё один эксперимент с изменением длительности пауз. Уменьшение длительности пауз выполним, скажем, пять раз. Сделаем паузу в 2 секунды, а затем будем увеличивать тоже пять раз. И вновь сделаем паузу в 2 секунды. Цикл, выполняемый заданное количество раз, называется циклом for и записывается он так:

for (int i = 0; i<5; i++)

что-то, что выполняется в цикле for

Для выполнения цикла ему нужна переменная, у нас это i, переменной нужно задать начальное значение, которое мы ей и присвоили. Затем следует условие завершения работы цикла, у нас i меньше 5. А запись i++ - это характерная для языка Си запись увеличения переменной на единицу. Фигурные скобки ограничивают набор команд, подлежащих выполнению в цикле for. В других языках программирования могут быть другие ограничители для выделения блока кода функции.

Внутри цикла мы выполняем то же, что и раньше, с небольшими изменениями:

for (int i = 0; i<5; i++)

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

my_del = my_del - 100;

Об изменении записи паузы мы говорили выше, а изменение самой паузы достигается уменьшением переменной на 100.

Для второго цикла мы запишем этот же блок кода, но переменную длительности паузы будем увеличивать на 100.

for (int i = 0; i<5; i++)

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

Вы заметили, что запись уменьшения паузы и её увеличения выглядят по-разному. Это тоже особенность языка Си. Хотя для ясности следовало повторить эту запись, изменив только знак минус на плюс. Итак, мы получаем такую программу:

int ledPin = 13;

int my_del = 1000;

pinMode (ledPin, OUTPUT);

for (int i = 0; i<5; i++)

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

for (int i = 0; i<5; i++)

digitalWrite (ledPin, HIGH);

digitalWrite (ledPin, LOW);

Скопируем код нашей программы в программу Arduin, скомпилируем её и загрузим в модуль. Изменение длительности пауз заметно. И будет ещё заметнее, попробуйте, если цикл for выполнить, скажем, раз 8.

То, что мы сейчас сделали, делают и профессиональные программисты - имея готовую программу, её легко можно модифицировать под свои нужды или желания. Поэтому все свои программы они хранят. Что я советую делать и вам.

Что мы упустили в своём эксперименте? Мы не прокомментировали нашу работу. Для добавления комментария используется либо двойная «прямая» косая черта, либо одиночная, но со звёздочками (см. Приложение А). Я советую вам это сделать самостоятельно, поскольку вернувшись к программе через некоторое время, вы легче в ней разберётесь, если будут пояснения, что вы делаете в том или ином месте программы. И ещё советую в папке с каждой программой хранить её описание на обычном языке, выполненное в любом текстовом редакторе.

Самая простая программа «помигать светодиодом» может послужить ещё для десятка экспериментов (даже с одним светодиодом). Мне кажется эта часть работы, придумывать, что ещё можно сделать интересного, самая интересная. Если вы обратитесь к приложению, где описан язык программирования, к разделу «управление программой», то можно заменить цикл for на другой вид цикла. И попробовать, как работают другие виды цикла.

Хотя процессор микроконтроллера, как любой другой, может производить вычисления (для того его и придумывали), и это используется, например, в приборах, всё-таки наиболее характерной операцией для микроконтроллера будет установка выхода порта в высокое или низкое состояние, то есть, «помигать светодиодом», как реакция на внешние события.

О внешних событиях микроконтроллер узнаёт, в основном, по состоянию входов. Настроив выводы порта на цифровой вход, мы можем следить за ним. Если исходное состояние входа - высокий уровень, а событие вызывает переход входа в низкое состояние, то мы можем что-то сделать, реагируя на это событие.

Самый простой пример - на входе кнопка. Когда кнопка не нажата, вход в высоком состоянии. Если нажать кнопку, то вход переходит в низкое состояние, а мы можем «зажечь» светодиод на выходе. При следующем нажатии на кнопку светодиод можно погасить.

Это опять пример простой программы. Даже начинающему она может показаться неинтересной. Однако и эта простая программа может найти вполне полезное применение. Приведу только один пример: мы будем после нажатия на кнопку не зажигать светодиод, а помигаем (определённым образом). И светодиод возьмём с инфракрасным излучением. В результате мы получим пульт управления. Вот такая простая программа.

В разных версиях программы есть различия в списке примеров. Но можно обратиться к руководству по языку в приложении, где есть пример и схема программы (в разделе примеров, названном «приложение») для работы с вводом. Я скопирую программу:

int ledPin = 13;

pinMode (ledPin, OUTPUT);

pinMode (inPin, INPUT);

if (digitalRead(inPin) == HIGH)

digitalWrite(ledPin, HIGH);

digitalWrite (ledPin, LOW);

И, как вы видите, совершенно новую программу мы получаем, модифицируя старую. Теперь светодиод будет мигать только тогда, когда нажата кнопка, которая присоединена к выводу 2. Вывод 2 через резистор 10 кОм присоединён к общему проводу (земле, GND). Кнопка одним концом присоединена к питающему напряжению +5В, а другим концом к выводу 2.

В программе мы встречаем новую языковую конструкцию if из раздела управления программой. Читается она так: если выполняется условие (заключённое в скобках), то выполняется блок программы, заключённый в фигурные скобки. Обратите внимание, что в условии (digitalRead(inPin) == HIGH) равенство входа высокому состоянию выполнено с помощью двух знаков равенства! Очень часто в спешке об этом забывается, и условие получается неверным.

Программу можно скопировать и загрузить в модуль Arduino. Однако, чтобы проверить работу программы, понадобиться внести некоторые изменения в конструкцию модуля. Впрочем, это зависит от разновидности модуля. Оригинальный модуль имеет розетки для соединения с платами расширения. В этом случае можно вставить подходящие одножильные провода в нужные места разъёма. Мой модуль имеет ножевые контакты для соединения с платами расширения. Я могу либо поискать подходящий разъём, либо, что дешевле, использовать подходящую панельку для микросхемы в корпусе DIP.

Второй вопрос - как найти у модуля те выводы, которые используются в программе?

С этим вопросом поможет разобраться картинка, которую я взял с сайта: http://robocraft.ru/.

Рис. 4.1. Расположение и назначение выводов контроллера и модуля Arduino

Все выводы моего модуля CraftDuino промаркированы, так что найти нужный вывод не составит труда. Можно подключать кнопку и резистор и проверять работу программы. Кстати, на вышеупомянутом сайте RoboCraft весь процесс отображён на картинках (но программа использует не совсем такие выводы!). Советую посмотреть.

Многие микроконтроллеры в своём составе имеют дополнительные аппаратные устройства. Так Atmega168, на основе которого собран модуль Arduino имеет UART, встроенный блок для связи с другими устройствами с помощью последовательного обмена данными. Например, с компьютером через COM-порт. Или с другим микроконтроллером с помощью его встроенного блока UART. Есть ещё и аналого-цифровой преобразователь. И формирователь широтно- импульсной модуляции.

Использование последнего иллюстрирует программа, которую я тоже скопирую с сайта RoboCraft. Но программу можно взять и из приложения. И, возможно, она есть в примерах программы Arduino.

// Fading LED by BARRAGAN

int value = 0; // переменная для хранения нужного значения

int ledpin = 9; // светодиод подключен к digital pin 9

// Нет необходимости вызвать функцию pinMode

for(value = 0 ; value <= 255; value+=5) // постепенно зажигаем светодиод

analogWrite(ledpin, value); // значение вывода (от 0 до 255)

delay(30); // ждѐм 🙂

for(value = 255; value >=0; value-=5) // постепенно гасим светодиод

analogWrite(ledpin, value);

Если в предыдущей программе новой для нас была функция digitalRead(inPin), чтение цифрового ввода, то в этой программе новая для нас функция analogWrite(ledpin, value), хотя параметры этой функции - уже знакомые нам переменные. Об использовании аналогового входа, использовании АЦП (аналого-цифрового преобразователя), мы поговорим позже. А сейчас вернёмся к общим вопросам программирования.

Программирование это то, что доступно всем, но потребуется время, чтобы освоить и программирование, и какой-либо язык программирования. Сегодня есть ряд программ, помогающих освоить именно программирование. И одна из них имеет непосредственное отношение к модулю Arduino. Называется она Scratch for Arduino или сокращённо S4A. Найти и скачать эту программу можно по адресу: http://seaside.citilab.eu/scratch/arduino. Я не знаю, как точно переводится название программы, но «to begin from scratch» переводится, как «начать с нуля».

На сайте проекта S4A есть версии для Windows и Linux, но для последней операционной системы готовая к установке программа в версии дистрибутива Debian. Не хочу сказать, что её нельзя использовать с другими дистрибутивами Linux, но вначале посмотрим, как работать в программе с модулем Arduino в Windows.

После установки программы обычным образом можно настроить интерфейс на русский язык, используя переключатель языков.

Рис. 4.2. Переключатель языков интерфейса программы

Первый значок инструментальной панели, если его нажать, отображает все возможные языки интерфейса программы. Русский язык можно найти в разделе…

Рис. 4.3. Список языков для использования в интерфейсе программы

… отмеченном, как «больше…».

Если ничего не предпринимать, то надпись в правом окне «Searching board…» остаётся, но модуль не находится. Чтобы модуль Arduino подключить к программе S4A, следует загрузить с сайта проекта ещё кое-что.

Рис. 4.4. Файл для загрузки в модуль Arduino для S4A

Этот файл не что иное, как программа для Arduino (Sketch). То есть, текстовый файл, который можно скопировать в редактор Arduino, откомпилировать и загрузить в модуль. После выхода из программы Arduino можно запустить программу S4A и теперь модуль находится.

Рис. 4.5. Подключение модуля к программе

Аналоговые входы модуля не подключены, как и цифровые, поэтому значения, отображаемые для модуля, постоянно меняются произвольным образом.

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Данный раздел посвящен книгам из мира Arduino. Для новичков и профессионалов.

Все книги и материалы представлены исключительно в ознакомительных целях, после ознакомления просим вас приобрести цифровую или бумажную копию.

Программы для чтения книг:

  • Книги формата PDF: Adobe Acrobat Reader или PDF Reader .
  • Книги формата DJVU: или Djvu Reader .

Практическая энциклопедия Arduino

В книге обобщаются данные по основным компонентам конструкций на основе платформы Arduino, которую представляет самая массовая на сегодняшний день версия ArduinoUNO или аналогичные ей многочисленные клоны. Книга представляет собой набор из 33 глав-экспериментов. В каждом эксперименте рассмотрена работа платы Arduino c определенным электронным компонентом или модулем, начиная с самых простых и заканчивая сложными, представляющими собой самостоятельные специализированные устройства. В каждой главе представлен список деталей, необходимых для практического проведения эксперимента. Для каждого эксперимента приведена визуальная схема соединения деталей в формате интегрированной среды разработки Fritzing. Она дает наглядное и точное представление - как должна выглядеть собранная схема. Далее даются теоретические сведения об используемом компоненте или модуле. Каждая глава содержит код скетча (программы) на встроенном языке Arduino с комментариями.

Электроника. Твой первый квадрокоптер. Теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера. Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ для компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.

Проекты с использованием контроллера Arduino (2-е изд.)

В книге рассмотрены основные платы Arduino и платы расширения (шилды), добавляющие функциональность основной плате. Подробно описан язык и среда программирования Arduino IDE. Тщательно разобраны проекты с использованием контроллеров семейства Arduino. Это проекты в области робототехники, создания погодных метеостанций, "умного дома", вендинга, телевидения, Интернета, беспроводной связи (bluetooth, радиоуправление).

Во втором издании добавлены проекты голосового управления с помощью Arduino, работа с адресуемыми RGB-лентами, управление iRobot Create на Arduino. Рассмотрены проекты с использованием платы Arduino Leonardo. Приведены пошаговые уроки для начинающих разработчиков.

Изучаем Arduino: инструменты и методы технического волшебства

Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.

Быстрый старт. Первые шаги по освоению Arduino

Книга ARDUINO Быстрый старт. Первые шаги по освоению ARDUINO содержит всю информацию для ознакомления с платой Arduino,а также 14 практических экспериментов с применением различных электронных компонентов и модулей.

Быстрый старт с набором Arduinо. Полученные знания, в дальнейшем, дадут возможность создавать свои собственные проекты и с легкостью воплощать их в жизнь.

Arduino, датчики и сети для связи устройств (2-е изд.)

Рассмотрены 33 проекта на основе микроконтроллерной платы Arduino, в которых показано, как сделать, чтобы электронные устройства могли обмениваться между собой данными и реагировать на команды. Показано, как изменить настройки домашнего кондиционера, «позвонив ему» со своего смартфона; как создавать собственные игровые контроллеры, взаимодействующие по сети; как использовать устройства ZigBee, Bluetooth, инфракрасное излучение и обычное радио для беспроводного получения информации от различных датчиков и др. Рассмотрены языки программирования Arduino, Processing и PHP.

Прочитав книгу — «Arduino, датчики и сети для связи устройств», Вы научитесь создавать сети интеллектуальных устройств, которые обмениваются данными и реагируют на команды. Книга идеально подходит для людей, которые стремятся воплотить на практике свои творческие идеи. Вам не надо обладать специальными техническими знаниями и навыками в области электроники, Для начала реализации проектов необходимы только книга, идеи и недорогой набор с контроллером Arduino и некоторыми сетевыми модулями и датчиками.

Arduino Essentials

The Arduino is an open source microcontroller built on a single circuit board that is capable of receiving sensory input from its environment and controlling interactive physical objects. It is also a development environment that allows you to write software to the board, and is programmed in the Arduino programming language. The Arduino has become the most popular microcontroller platform and thus hundreds of projects are being developed using it, from basic to advanced levels.

This book will first introduce you to the most important board models of the Arduino family. You will then learn to set up the Arduino software environment. Next, you will work with digital and analog inputs and outputs, manage the time precisely, establish serial communications with other devices in your projects, and even control interrupts to make your project more responsive. Finally, you will be presented with a complete real-world example by utilizing all the concepts learned so far in the book. This will enable you to develop your own microcontroller projects.

Arduino Development Cookbook

If you want to build programming and electronics projects that interact with the environment, this book will offer you dozens of recipes to guide you through all the major applications of the Arduino platform. It is intended for programming or electronics enthusiasts who want to combine the best of both worlds to build interactive projects.

The single-chip computer board Arduino is small in size but vast in scope, capable of being used for electronic projects from robotics through to home automation. The most popular embedded platform in the world, Arduino users range from school children to industry experts, all incorporating it into their designs.

Arduino Development Cookbook comprises clear and step-by-step recipes that give you the toolbox of techniques to construct any Arduino project, from the simple to the advanced. Each chapter gives you more essential building blocks for Arduino development, from learning about programming buttons through to operating motors, managing sensors, and controlling displays. Throughout, you’ll find tips and tricks to help you troubleshoot your development problems and push your Arduino project to the next level!

Arduino Sketches: Tools and Techniques for Programming Wizardry

Master programming Arduino with this hands-on guide Arduino Sketches is a practical guide to programming the increasingly popular microcontroller that brings gadgets to life. Accessible to tech-lovers at any level, this book provides expert instruction on Arduino programming and hands-on practice to test your skills. You’ll find coverage of the various Arduino boards, detailed explanations of each standard library, and guidance on creating libraries from scratch plus practical examples that demonstrate the everyday use of the skills you’re learning.

Work on increasingly advanced programming projects, and gain more control as you learn about hardware-specific libraries and how to build your own. Take full advantage of the Arduino API, and learn the tips and tricks that will broaden your skillset. The Arduino development board comes with an embedded processor and sockets that allow you to quickly attach peripherals without tools or solders. It’s easy to build, easy to program, and requires no specialized hardware. For the hobbyist, it’s a dream come true especially as the popularity of this open-source project inspires even the major tech companies to develop compatible products.

Arduino and LEGO Projects

We all know how awesome LEGO is, and more and more people are discovering how many amazing things you can do with Arduino. In Arduino and LEGO Projects, Jon Lazar shows you how to combine two of the coolest things on the planet to make fun gadgets like a Magic Lantern RF reader, a sensor-enabled LEGO music box, and even an Arduino-controlled LEGO train set.

* Learn that SNOT is actually cool (it means Studs Not on Top)
* See detailed explanations and images of how everything fits together
* Learn how Arduino fits into each project, including code and explanations

Whether you want to impress your friends, annoy the cat, or just kick back and bask in the awesomeness of your creations, Arduino and LEGO Projects shows you just what you need and how to put it all together.

Arduino Workshop

The Arduino is a cheap, flexible, open source microcontroller platform designed to make it easy for hobbyists to use electronics in homemade projects. With an almost unlimited range of input and output add-ons, sensors, indicators, displays, motors, and more, the Arduino offers you countless ways to create devices that interact with the world around you.

In Arduino Workshop, you’ll learn how these add-ons work and how to integrate them into your own projects. You’ll start off with an overview of the Arduino system but quickly move on to coverage of various electronic components and concepts. Hands-on projects throughout the book reinforce what you’ve learned and show you how to apply that knowledge. As your understanding grows, the projects increase in complexity and sophistication.

C Programming for Arduino

Building your own electronic devices is fascinating fun and this book helps you enter the world of autonomous but connected devices. After an introduction to the Arduino board, you’ll end up learning some skills to surprise yourself.

Physical computing allows us to build interactive physical systems by using software & hardware in order to sense and respond to the real world. C Programming for Arduino will show you how to harness powerful capabilities like sensing, feedbacks, programming and even wiring and developing your own autonomous systems.

C Programming for Arduino contains everything you need to directly start wiring and coding your own electronic project. You’ll learn C and how to code several types of firmware for your Arduino, and then move on to design small typical systems to understand how handling buttons, leds, LCD, network modules and much more.

Arduino для начинающих волшебников

Эта книга о платформе Arduino, которая день ото дня становится все популярнее, и целая армия экспериментаторов-надомников, конструкторов-любителей и хакеров начинает использовать ее для воплощения в жизнь как прекрасных, так и совершенно сумасшедших проектов. С помощью Arduino любой гуманитарий может познакомиться с основами электроники и программирования и быстро начать разработку собственных моделей, не тратя на это значительных материальных и интеллектуальных ресурсов. Arduino объединяет игру и обучение, позволяет создать что-то стоящее и интересное под влиянием внезапного порыва, воображения и любопытства. Эта платформа расширяет возможности креативного человека в сфере электроники, даже если он в ней ничего не смыслит! Экспериментируйте и получайте удовольствие!

Программирование микроконтроллерных плат Arduino/Freeduino

Рассмотрено программирования микроконтроллерных плат Arduino/Freduino. Описана структура и функционирование микроконтроллеров, среда программирования Arduino, необходимые инструменты и комплектующие для проведения экспериментов. Подробно рассмотрены основы программирования плат Arduino: структура программы, команды, операторы и функции, аналоговый и цифровой ввод/вывод данных. Изложение материала сопровождается более 80 примерами по разработке различных устройств: реле температуры, школьных часов, цифрового вольтметра, сигнализации с датчиком перемещения, выключателя уличного освещения и др. Для каждого проекта приведен перечень необходимых компонентов, монтажная схема и листинги программ. На FTP-сервере издательства выложены исходные коды примеров из книги, технические описания, справочные данные, среда разработки, утилиты и драйверы.

Arduino and Kinect Projects

If you’ve done some Arduino tinkering and wondered how you could incorporate the Kinect—or the other way around—then this book is for you. The authors of Arduino and Kinect Projects will show you how to create 10 amazing, creative projects, from simple to complex. You’ll also find out how to incorporate Processing in your project design—a language very similar to the Arduino language.

The ten projects are carefully designed to build on your skills at every step. Starting with the Arduino and Kinect equivalent of «Hello, World,» the authors will take you through a diverse range of projects that showcase the huge range of possibilities that open up when Kinect and Arduino are combined.

Atmospheric Monitoring with Arduino

Makers around the globe are building low-cost devices to monitor the environment, and with this hands-on guide, so can you. Through succinct tutorials, illustrations, and clear step-by-step instructions, you’ll learn how to create gadgets for examining the quality of our atmosphere, using Arduino and several inexpensive sensors.

Detect harmful gases, dust particles such as smoke and smog, and upper atmospheric haze—substances and conditions that are often invisible to your senses. You’ll also discover how to use the scientific method to help you learn even more from your atmospheric tests.

* Get up to speed on Arduino with a quick electronics primer
* Build a tropospheric gas sensor to detect carbon monoxide, LPG, butane, methane, benzene, and many other gases
* Create an LED Photometer to measure how much of the sun’s blue, green, and red light waves are penetrating the atmosphere
* Build an LED sensitivity detector—and discover which light wavelengths each LED in your Photometer is receptive to
* Learn how measuring light wavelengths lets you determine the amount of water vapor, ozone, and other substances in the atmosphere

Руководство по освоению Arduino

Издание представляет собой русскоязычный перевод одного из документов по работе с набором ARDX (Starter Kit for Arduino), предназначенного для экспериментов с Arduino. В документации описано 12 простейших проектов, ориентированных на начальное знакомство с модулем Arduino.

Основная цель этого набора - интересно и с пользой провести время. А помимо этого — освоить разнообразные электронные компоненты путем сборки небольших простых и интересных устройств. Вы получаете работающее устройство и инструмент, позволяющий понять принцип действия.

Большая Энциклопедия Электрика

Самая полная на сегодняшний день книга, в которой вы найдете массу полезной информации, начиная с азов. В книге раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое.

В книге «Большая энциклопедия электрика» раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое. Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Arduino блокнот программиста

Этот блокнот следует рассматривать, как удобное, лёгкое в использовании руководство по структуре команд и синтаксису языка программирования контроллера Arduino. Для сохранения простоты, были сделаны некоторые исключения, что улучшает руководство при использовании начинающими в качестве дополнительного источника информации — наряду с другими web-сайтами, книгами, семинарами и классами. Подобное решение, призвано акцентировать внимание на использовании Arduino для автономных задач и, например, исключает более сложное использование массивов или использование последовательного соединения.

Начиная с описания структуры программы для Arduino на языке C, этот блокнот содержит описание синтаксиса наиболее общих элементов языка и иллюстрирует их использование в примерах и фрагментах кода. Блокнот содержит примеры функций ядра библиотеки Arduino, а в приложении приводятся примеры схем и начальных программ.

Аналоговые интерфейсы микроконтроллеров

Данное издание является практическим пособием по применению различных интерфейсов для подключения аналоговых периферийных устройств к компьютерам, микропроцессорам и микроконтроллерам.

Раскрывается специфика применения таких интерфейсов, как I2C, SPI/Microware, SMBus, RS-232/485/422, токовая петля 4-20 мА и др. Дается обзор большого количества современных датчиков: температурных, оптических, ПЗС, магнитных, тензодатчиков и т. д. Подробно описываются контроллеры, АЦП и ЦАПы, их элементы — УВХ, ИОН, кодеки, энкодеры.

Рассмотрены исполнительные устройства — двигатели, терморегуляторы — и вопросы их управления в составе систем автоматического управления различного типа (релейного, пропорционального и ПИД). Книга снабжена иллюстрациями, наглядно представляющими аппаратные и программные особенности применения элементов аналоговой и цифровой техники. Заинтересует не только начинающих радиолюбителей, но и специалистов, имеющих стаж работы с аналоговой и цифровой техникой, а также студентов технических колледжей и вузов.

Руководство по использованию АТ-команд для GSM/GPRS модемов

В этом пособии изложено детальное описание полного набора АТ команд для работы с модемами компании Wavecom. Приведены специальные АТ команды для работы с протоколами стека IP, программно реализованными в модемах Wavecom.

Книга ориентирована на разработчиков, создающих программные и программно-аппаратные приложения на базе продукции Wavecom. Руководство так же рекомендуется инженерам, отвечающим за эксплуатацию систем различного назначения, применяющим в качестве канала передачи данных сети GSM. Отличный справочник для студентов, которые используют в своей курсовой или дипломной работе тематику передачи данных в GSM сетях.

Расскажи о нас

Сообщение

Если у Вас есть опыт в работе с Arduino и собственно есть время для творчества, мы приглашаем всех желающих стать авторами статей публикуемых на нашем портале. Это могут быть как уроки, так и рассказы о ваших экспериментах с Arduino. Описание различных датчиков и модулей. Советы и наставления начинающим. Пишите и размещайте свои статьи в .

Целевой аудиторией Ардуино являются непрофессиональные пользователи в сфере роботостроения и простейших систем автоматики. Основной продукцией является набор плат, комбинируя которые, возможно создавать различные устройства, способные выполнять широкий ряд задач.

В качестве примера, из набора плат, выпускаемых данной фирмой, можно собрать автоматическую кормушку для своих домашних животных. И это лишь один из наиболее простых примеров. Сфера их возможного применения ограничивается лишь фантазией пользователей.

Кроме печатных плат, выпускаемых под торговой маркой Arduino, у них имеется собственный язык программирования Ардуино, который основывается на широко известном в кругу программистов языке C/C++ . Давайте более подробно разберемся, что он из себя представляет.

Язык программирования Ардуино довольно прост в освоении, так как основной целевой аудиторией его применения являются любители. Однако считается одним из самых лучших языков для программирования микроконтроллеров.

Arduino IDE является бесплатной программой, скачать которую может любой желающий. На нашем сайте вы можете любую подходящую для вас версию среды. Также доступ к скачиванию IDE предоставлен на официальном сайте компании, а при желании, разработчиков можно отблагодарить, сделав денежный перевод.

Программу, написанную на языке программирования Ардуино называют скетчем. Готовые скетчи записываются на плату для их выполнения.

Среда IDE поддерживается такими операционными системами, как Windows, MacOs и Linux. На официальном сайте компании указанно, что данный язык программирования написан на Wiring, но на самом деле его не существует и для написания используется C++ с небольшими изменениями.

Что необходимо для начала работы с Arduino IDE?

Для начала нам потребуются следующие вещи:

  • платы Arduino;
  • кабель USB;
  • компьютер с установленной на него программой Arduino IDE.

Имея этот набор, можно начинать экспериментировать с имеющимися у вас платами, записывая на них ваши первые скетчи.

Как настроить Ардуино на компьютере?

Делается это просто. Необходимо выполнить следующие действия:

  • необходимо подключить собранное вами изделие к компьютеру посредством USB кабеля;
  • в диспетчере устройств необходимо проверить, к какому порту подключен ваш микроконтроллер. Если он не отображается или написано, что устройство не опознано – значит, вы не правильно установили драйвер или ваша плата нуждается в диагностике;
  • следующим шагом будет запуск нашего языка программирования Arduino IDE. В меню необходимо выбрать вкладку инструменты. При ее нажатии откроется список, в котором необходимо выбрать пункт – порт. Там надо выбрать порт, указанный в диспетчере устройств;
  • конечным пунктом является выбор платы, которую мы будем использовать для загрузки скетчей.

Важно! При подключении вашей платы к другому USB порту все настройки будет необходимо произвести заново.

Знакомство с интерфейсом Ардуино

Одним из основных элементов ардуино является главное меню программы, которое позволяет получить доступ ко всем доступным функциям нашей программы.

Ниже расположена панель с иконками, которые отображают наиболее используемые функции Arduino IDE:

  • проверка на наличие ошибок;
  • создание нового скетча;
  • открытие окна порта микроконтроллера;
  • Следующим по важности элементом является вкладка с файлами проекта. Если это простой скетч, то файл будет всего один. Однако сложные скетчи могут состоять из нескольких файлов. В таком случае на панели вкладок можно быстро переключить просмотр с одного файла на другой. Это очень удобно.

    Самым большим из блоков является поле редактора наших скетчей. Тут мы можем просмотреть и, при необходимости, отредактировать нужный нам программный код. Отдельно реализовано поле для вывода системных сообщений. С его помощью можно убедиться, что сохранение вашего скетча или его загрузка были проведены успешно, и вы можете приступать к следующим действиям. Также в программе существует окно, отображающее наличие в ходе компиляции вашего скетча.

    Компиляция – преобразование исходного кода языка высокого уровня в машинный код или на язык ассемблера.

    Основные функции языка программирования

    Давайте наконец-то перейдем к самым основным функция языка программирования Ардуино.

    Сразу скажем, что все функции вы можете найти в нашем удобном на .

    Точка с запятой;

    Точка с запятой должна следовать за каждым выражением, написанным на языке программирования Arduino. Например:

    Int LEDpin = 9;

    В этом выражении мы присваиваем значение переменной и обратите внимание на точку с запятой в конце. Это говорит компилятору, что вы закончили кусок кода и переходите к следующему фрагменту. Точка с запятой в коде Ардуино отделяет одно полное выражение от другого.

    Двойная обратная косая черта для однострочных комментариев //

    // Всё что идет после двойной косой черты будет серым и не будет считываться программой

    Комментарии - это то, что вы используете для комментирования кода. Хороший код хорошо комментируется. Комментарии предназначены для того, чтобы сообщать вам и всем, кто мог бы наткнуться на ваш код, то как вы думали, когда вы его написали. Хорошим комментарием было бы что-то вроде этого:

    // К этому пину Arduino подключаем светодиод int LEDpin = 9;

    Теперь, даже через 3 месяца когда я просматриваю эту программу я знаю о том куда подключался светодиод.

    Компилятор будет игнорировать комментарии, поэтому вы можете писать все, что вам нравится. Если вам нужно много текста для комментария вы можете использовать многострочный комментарий, показанный ниже:

    /* Многострочный комментарий открывается одним обратным слэшем, за которым следует звездочка. Все последующее будет выделено серым цветом и будет игнорироваться компилятором, пока вы не закроете комментарий, используя сначала звездочку, а затем обратную косую черту */

    Комментарии похожи на сноски кода, но более распространены, чем те что ставят в книгах внизу страниц.

    Фигурные скобки { }

    Фигурные скобки используются для того, чтобы добавить инструкции, выполняемые функцией (мы обсудим функции дальше). Всегда есть открытая фигурная скобка и закрывающая фигурная скобка. Если вы забудете закрыть фигурную скобку, компилятор выведет код ошибки.

    Void loop() { //эта фигурная скобка открывается //крутая программа здесь }//эта фигурная скобка закрывается

    Помните - никакая фигурная скобка не может не быть закрыта!

    Функции ()

    Теперь пора поговорить о функциях. Функции - это фрагменты кода, которые используются так часто, что они инкапсулированы в определенные ключевые слова, чтобы вы могли использовать их более легко. Например, функцией может быть следующий набор инструкций в случае если вам нужно помыть собаку:

    1. Получить ведро
    2. Заполнить его водой
    3. Добавить мыло
    4. Найти собаку
    5. Намылить собаку
    6. Помыть собаку
    7. Ополоснуть собаку
    8. Посушить собака
    9. Отложить ведро

    Этот набор простых инструкций может быть инкапсулирован в функцию, которую мы можем назвать WashDog. Каждый раз, когда мы хотим выполнить все эти инструкции, мы просто набираем WashDog и вуаля - все инструкции выполняются.

    В Ардуино есть определенные функции, которые часто используются в среде . Когда вы вводите их, имя функции будет оранжевым. Например, функция pinMode() является общей функцией, используемой для обозначения режима вывода Arduino.

    А что с круглыми скобками после функции pinMode? Для многих функций требуются аргументы. Аргумент - это информация, которую функция использует при ее запуске. Для нашей функции WashDog аргументами могут быть имя собаки и тип мыла, а также температура и размер ведра.

    PinMode(13, OUTPUT); //Устанавливает режим вывода Arduino

    Аргумент 13 относится к выводу 13, а OUTPUT - режим, в котором вы хотите, чтобы пин работал. Когда вы вводите эти аргументы, в терминология это называется передачей данных, вы передаете необходимую информацию в функции. Не всем функциям требуются аргументы, но открытие и закрытие круглых скобок остаются, хотя и пустыми.

    Millis(); //Получает время в миллисекундах за которое Arduino запускается

    Обратите внимание, что слово OUTPUT обычно синего цвета. В языке программирования Ардуино есть определенные ключевые слова, которые часто используются, а синий цвет помогает их идентифицировать. Arduino IDE автоматически превращает их в синий цвет.

    void setup ()

    Функция setup (), как следует из названия, используется для настройки платы Arduino. Ардуино выполняет весь код, который содержится между фигурными скобками после setup() только один раз. Типичные вещи, которые происходят в setup() - это, например, установка режимом контактов:

    Void setup() { //код между фигурными фигурными скобками выполняется только один раз }

    Возможно, вам интересно что означает void перед функцией setup(). Void означает, что функция не возвращает информацию.

    Некоторые функции возвращают значения - наша функция DogWash может вернуть количество ведер, необходимых для очистки собаки. Функция analogRead() возвращает целое значение от 0 до 1023. Если это сейчас кажется немного странным, не беспокойтесь, поскольку мы будем охватывать каждую общую функцию Arduino по мере продолжения курса.

    Давайте рассмотрим пару вещей, которые вы должны знать о setup():

    1. setup() запускается только один раз;
    2. setup() должна быть первой функцией в скетче Ардуино;
    3. setup() должна иметь открывающиеся и закрывающие фигурные скобки.

    void loop()

    Вы должны любить разработчиков Arduino, потому они сделали так, что имена функций говорят сами за себя. Как следует из названия, весь код между фигурными скобками в loop() повторяется снова и снова, а слово loop переводится именно как "цикл". Функция loop() - это место, где будет находиться тело вашей программы.

    Как и в случае с setup(), функция loop() не возвращает никаких значений, поэтому перед неё предшествует слово void.

    Void loop() { //любой код, который вы здесь задаете, выполняется снова и снова }

    Вам кажется странным, что код работает в одном большом цикле? Это очевидное отсутствие вариации - иллюзия. Большая часть вашего кода будет иметь определенные условия ожидания, которые вызовут новые действия.

    Существуют ли еще программы, работающие с Ардуино?

    Помимо официальной Arduino IDE, существуют программы сторонних разработчиков, которые предлагают свои продукты для работы с микроконтроллерами на базе ардуино.

    Аналогичный набор функций нам может предоставить программа, которая называется Processing. Она очень схожа с Arduino IDE, так как обе сделаны на одном движке. Processing имеет обширный набор функций, который мало уступает оригинальной программе. С помощью загружаемой библиотеки Serial пользователь может создать связь между передачей данных, которые передают друг другу плата и Processing.При этом мы можем заставить плату выполнять программы прямо с нашего ПК.

    Существует еще одна интересная версия исходной программы. Называется она B4R, и главным ее отличием является использование в качестве основы не языка си, а другой язык программирования – Basic. Данный программный продукт является бесплатным. Для работы с ним существуют хорошие самоучители, в том числе и написанные создателями данного продукта.

    Есть и платные варианты Arduino IDE. Одним из таких является программа PROGROMINO. Главным ее достоинством считается возможность автодополнения кода. При составлении программы вам больше не нужно будет искать информацию в справочниках. Программа сама предложит вам возможные варианты использования той или иной процедуры. В ее набор входит еще множество интересных функций, отсутствующих в оригинальной программе и способных облегчить вам работу с платами.

    Конкуренты Ардуино

    Данный рынок по производству микроконтроллеров для создания различных электронных схем и робототехники имеет много поклонников по всему земному шару. Данная ситуация способствует появлению на рынке не только конкурентов, которые предлагают схожие продукты. Кроме них выпускается значительное количество подделок разного качества. Одни очень тяжело отличить от оригиналов, ведь они имеют идентичное качество, другие обладают очень плохими характеристиками и могут вовсе не работать с оригинальными продуктами.

    Существуют даже платы Arduino, которые поддерживают работу микропроцессоров с интерпретаторами JavaScript. Актуальны они, в первую очередь, для тех, кто желает использовать язык Java вместо Си. Ведь он более прост, и позволяет добиваться результатов с повышенной скоростью. Однако данные платы являются более дорогими по отношению к ардуино, что является существенным минусом.

    Если вы ищите себе хобби и вам интересно такое направление, как электротехника, вы смело можете выбирать для этого Arduino. Плюсов такое хобби имеет массу. Вы будете развиваться в интеллектуальном плане, так как данное занятие потребует от вас знаний в разных областях.

    Помимо развлечений, ваше хобби поможет вам в создании массы полезных изделий, которые вы сможете использовать для облегчения повседневной жизни. С каждым разом вы будете находить все новые и новые способы использования вашего увлечения.

    Освоить данное занятие будет не так сложно, благодаря наличию большого количества учебников и самоучителей. В дальнейшем вы найдете множество единомышленников по всему миру, которые поделятся с вами своими знаниями и дадут вам стимул для совершения новых экспериментов!



    
    Top