Виды алгоритмов. Понятие алгоритма. Свойства, способы описания. Типы алгоритмов

Известны три типа алгоритмов – линейные, разветвляющиеся, циклические.

Линейный тип алгоритмов

Алгоритмы, в которых команды выполняются друг за другом, независимо от каких-либо условий, называются алгоритмами линейного типа.

Например, алгоритм вычисления по самым простейшим формулам, не имеющих ограничений на значения входящих в них переменных.

Пример

Постановка задачи : вычислить площадь круга, если известен радиус.

Дано: R– радиус круга.

Найти: S– площадь круга.

Решение: S=3,14R 2

Словесная форма записи алгоритма

Выберем русский язык для записи алгоритма в этой форме и запишем последовательность команд, выполнение которых при заданном значении радиуса позволит найти площадь:

    Прочесть значение R.

    Умножить значение Rна 3,14.

    Умножить результат второго действия на значение R.

    Записать полученный результат как значение S.

На языке блок-схем – рис. 8

Разветвляющийся тип алгоритмов

Решение задач не всегда можно представить в виде линейного алгоритма.

Алгоритмы, в которых требуется организовать выбор последовательности действий в зависимости от каких-либо условий, называют алгоритмами разветвляющегося типа.

При графическом способе ветвление организуется с помощью логического элемента (ромб), имеющего один вход и два выхода. Назначение логического элемента – проверка заданного условия. В зависимости от выполнения (истинности) или невыполнения (ложности) проверяемого условия возможен выход соответственно на ветвь «Да» или «Нет».

Пример

Постановка задачи : вычислить
.

Дано : х – значение аргумента.

Найти : у – значение функции.

Решение:

y= x , если х  0

- x , если х<0

Блок-схема - см. рис. 9.

Словесное представление

На псевдокоде :

Прочесть значение х

Если х>0, то

Конец ветвления

Записать значение у

Выделяют полную и неполную условную конструкцию .

Циклический тип алгоритмов

При составлении алгоритмов решения достаточно большого круга задач нередко возникает потребность в неоднократном повторении одних и тех же команд.

Алгоритм, составленный с использованием многократных повторений одних и тех же действий (циклов), называется алгоритмов циклического типа .

Однако, «неоднократно» не значит «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма (так называемое зацикливание), является нарушением требования его результативности.

При разработке алгоритма циклической структуры выделяют следующие понятия:

    параметр цикла – величина, с изменением которой связано многократное выполнение цикла;

    начальное и конечное значение параметра цикла ;

    шаг цикла – это значение, на которое изменяется параметр цикла при каждом повторении.

Циклический алгоритм состоит из подготовки цикла, тела цикла, условия продолжения цикла .

В подготовку цикла входят действия, связанные с заданием исходных значений для параметра цикла (начальное и конечное значения, шаг параметра).

В тело цикла входят: многократно повторяющиеся действия для вычисления искомых величин; подготовка следующего значения параметра цикла, подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения определяется необходимость дальнейшего выполнения повторяющихся действий. Если параметр цикла превысил конечное значение, то выполнение цикла должно быть прекращено.

Рассмотрим графическое представление циклического блока алгоритма (см. рис. 10).

Циклы могут быть с предусловием (когда условие проверяется перед началом тела цикла) и спостусловием (когда условие проверяется после первого прохождения тела цикла).

Цикл с постусловием

Цикл с предусловием

ПОНЯТИЕ АЛГОРИТМА. СВОЙСТВА АЛГОРИТМА. ВИДЫ АЛГОРИТМОВ. СПОСОБЫ ОПИСАНИЯ АЛГОРИТМОВ

Алгоритмом называется точное и понятное предписаниe исполнителю совершить последовательность действий, направленных на решение поставленной задачи. Слово «алгоритм» происходит от имени математика Аль Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмом понимали только правила выполнения четырех арифметических действий над числами. В дальнейшем это понятие стали использовать вообще для обозначения последовательности действий, приводящих к решению любой поставленной задачи. Говоря об алгоритме вычислительного процесса, необходимо понимать, что объектами, к которым применялся алгоритм, являются данные. Алгоритм решения вычислительной задачи представляет собой совокупность правил преобразования исходных данных в результатные.

Основными свойствами алгоритма являются:

  1. детерминированность (определенность). Предполагает получение однозначного результата вычислительного процecca при заданных исходных данных. Благодаря этому свойству процесс выполнения алгоритма носит механический характер;
  2. результативность. Указывает на наличие таких исходных данных, для которых реализуемый по заданному алгоритму вычислительный процесс должен через конечное число шагов остановиться и выдать искомый результат;
  3. массовость. Это свойство предполагает, что алгоритм должен быть пригоден для решения всех задач данного типа;
  4. дискретность. Означает расчлененность определяемого алгоритмом вычислительного процесса на отдельные этапы, возможность выполнения которых исполнителем (компьютером) не вызывает сомнений.

Алгоритм должен быть формализован по некоторым правилам посредством конкретных изобразительных средств. К ним относятся следующие способы записи алгоритмов: словесный, формульно-словесный, графический, язык операторных схем, алгоритмический язык.

Наибольшее распространение благодаря своей наглядности получил графический (блок-схемный) способ записи алгоритмов.

Блок-схемой называется графическое изображение логической структуры алгоритма, в котором каждый этап процесса обработки информации представляется в виде геометрических символов (блоков), имеющих определенную конфигурацию в зависимости от характера выполняемых операций. Перечень символов, их наименование, отображаемые ими функции, форма и размеры определяются ГОСТами.

При всем многообразии алгоритмов решения задач в них можно выделить три основных вида вычислительных процессов:

  • линейный;
  • ветвящийся;
  • циклический.

Линейным называется такой вычислительный процесс, при котором все этапы решения задачи выполняются в естественном порядке следования записи этих этапов.

Ветвящимся называется такой вычислительный процесс, в котором выбор направления обработки информации зависит от исходных или промежуточных данных (от результатов проверки выполнения какого-либо логического условия).

Циклом называется многократно повторяемый участок вычислений. Вычислительный процесс, содержащий один или несколько циклов, называется циклическим . По количеству выполнения циклы делятся на циклы с определенным (заранее заданным) числом повторений и циклы с неопределенным числом повторений. Количество повторений последних зависит от соблюдения некоторого условия, задающего необходимость выполнения цикла. При этом условие может проверяться в начале цикла - тогда речь идет о цикле с предусловием, или в конце - тогда это цикл с постусловием.

Могут быть простыми, сложными, однако у всех из них есть общие черты. Вот по этим чертам и принято выделять три типа алгоритмов, с которыми мы и познакомимся.

В алгоритмах команды записываются друг за другом в определенном порядке. Выполняются они не обязательно в записанной последовательности. Могут существовать внутренние отсылки к различным командам.

Вообще, выполнение команд по алгоритму чем-то напоминает настольные игры, в которых участники по очереди бросают кубики и ходят по полям. Причем на полях могут быть комментарии в стиле: «Вернитесь на 2 клетки назад» или «Пройдите на 5 клеток вперед»

Более сложной моделью выполнения алгоритма является известная игра «Монополия» или «Менеджер»

Существенное отличие этой игры от простого выполнения алгоритма состоит в том, что конечной целью участников является не прохождение пути, а накопление денег при помощи определенных действий.

В зависимости от порядка выполнения команд можно выделить три типа алгоритмов:

Линейные алгоритмы;

Алгоритмы с ветвлениями;

Алгоритмы с повторениями.

«Монополия»

«Монополия» относится к одной из самых популярных настольных игр. Ее правила достаточно просты и понятны каждому, кто хоть раз в нее играл.

На момент старта игроки обладают равным количеством наличных денег. Бросая кубики и передвигая свои фишки по закольцованному игровому полю, они приобретают участки недвижимости разных цветов. Оказавшись на приобретенном противником участке, игрок обязан выплатить тому установленную арендную плату. Выкупив все участки одной цветовой группы, участник может строить на них дома и отели, которые увеличивают размеры аренды. Цель всего происходящего банальна – разорить всех соперников.

Согласно официальным источникам – компании Parker Brothers, с 1935 года и по сей день выпускающей «Монополию», – легендарная настольная игра появилась на свет следующим образом. В 1934 году безработный инженер Чарльз Дарроу предложил вышеуказанной конторе выпустить придуманную им игру о торговле недвижимостью.

Обнаружив в настольной игре 52 дизайнерские ошибки, братья Паркеры отказали изобретателю. Тот с чисто американской предприимчивостью отправился в типографию, заказал 5 тысяч экземпляров игры и довольно быстро их распродал. Осознав, что прибыль утекает прямо у них из-под носа, Parker Brothers спешно приобрели права на «Монополию», и уже в следующем году она стала самой продаваемой настольной игрой в США, а Дарроу – живым воплощением американской мечты.

Однако вместе с тем известны и более ранние игры, поразительно напоминающие «Монополию». Выходит, Дарроу просто оказался первым, кто подсуетился и получил патент на «народную» забаву? И да, и нет. Расследования последних лет проливают свет на тайну происхождения «Монополии».

Во второй половине позапрошлого века в Соединенных Штатах жил и работал политэкономист Генри Джордж. Он предлагал заменить все поборы одним-единственным налогом – на землю. Проникшись его идеями, в январе 1904 года Мэги получает патент на настольную игру The Landlord’s Game, которая и правилами, и внешним видом напоминает нынешнюю «Монополию». Считается, что «Игра владельца земли» обладала двумя вариантами правил: сыграв партию по действующим законам налогообложения, игроки переходили к модели, предложенной Джорджем, – и якобы убеждались в ее необходимых преимуществах. Таким образом, игра была не развлечением, но инструментом идеологической борьбы.

До массового производства дело не дошло, зато The Landlord’s Game постепенно распространилась по Северной Америке в кустарных копиях. Всплеск интереса к настольной игре пришелся на годы Великой депрессии: тысячи безработных были рады вообразить себя денежными мешками хотя бы за игровым столом. Появление предприимчивого человека вроде Чарльза Дарроу стало делом нескольких месяцев – и он появился, на многие десятилетия присвоив славу единоличного изобретателя «Монополии».

Нашлись, конечно, и те, кто счел должным урвать кусок у правообладателей. Нелицензионные «Монополии» наводнили Китай. И в нашей стране выпускались и выпускаются стройные ряды клонов – «Маклер», «Кооператив», «Менеджер»

В свете недавнего переосмысления роли Дэрроу в создании «Монополии» и истечения действия авторских прав засудить такие компании не получится. Даже если предположить, что никакой Элизабет Мэги на свете не было, правила «Монополии» давно перешли в общественное достояние. Впрочем, часть патента Hasbro все еще держит при себе: дизайн фишек, графическое оформление, последовательность клеток на игровом поле.

Линейные алгоритмы

Алгоритм, в котором команды выполняются в порядке их записи, то есть последовательно друг за другом, называется линейным.

Например, линейным является следующий алгоритм замены перегоревшей лампочки:

1. выключить выключатель света;

2. выкрутить перегоревшую лампочку;

3. вкрутить новую лампочку;

4. включить выключатель, чтобы проверить, что лампочка горит.

Алгоритмы с ветвлениями

Ситуации, когда заранее известна последовательность требуемых действий, встречаются крайне редко. В жизни часто приходится принимать решение в зависимости от сложившейся обстановки. Если идет дождь, мы берем зонт и надеваем плащ; если жарко, надеваем легкую одежду. Встречаются и более сложные условия выбора. В некоторых случаях от выбранного решения зависит дальнейшая судьба человека.

Логику принятия решения можно описать так:

ЕСЛИ <условие>, ТО <действия 1>,

ИНАЧЕ <действия 2>

ЕСЛИ будут деньги, ТО купи хлеба, ИНАЧЕ не покупай.

ЕСЛИ будешь сегодня в центре, ТО набери меня, ИНАЧЕ не набирай.

ЕСЛИ уроки выучены, ТО иди гулять, ИНАЧЕ учи уроки.

В некоторых случаях <действия 2> могут отсутствовать. Это может быть связано как с его очевидностью (как, например, в первом примере – понятно, что если у тебя нет денег, то хлеба ты купить просто не сможешь), так и с отсутствием необходимости в нем.

ЕСЛИ <условие>, ТО <действия 1>

ЕСЛИ назвался груздем, ТО полезай в кузов.

ЕСЛИ хочешь быть здоров, ТО закаляйся.

Форма организации действий, при которой в зависимости от выполнения или невыполнения некоторого условия совершается либо одна, либо другая последовательность действий, называется ветвлением.

Изобразим в виде блок-схемы последовательность действий ученика 6 класса, забывшего ключи от квартиры, которую он представляет себе так: «Если мама дома, то я приду и сяду делать домашнее задание. Если мамы дома нет, то я пойду поиграть с друзьями в футбол, пока не придет мама. Если друзей на улице не будет, то покатаюсь на качелях до тех пор, пока не придет мама».

Необходимые и достаточные условия

Мы уже обсуждали с вами, что существуют необходимые и достаточные условия.

Примером необходимого условия может служить такое:

Чтобы стать врачом, необходимо получить медицинское образование.

Условие наличия медицинского образования является необходимым для работы врачом, однако не является достаточным. Действительно, не все выпускники медицинских вузов становятся врачами.

Примером достаточного условия может стать такое:

Для того чтобы стало прохладнее, достаточно включить кондиционер.

Это условие является достаточным: если включить кондиционер, то действительно станет прохладнее. Однако это условие не является необходимым, ведь для достижения той де цели можно включить вентилятор, открыть окно и т. п.

Конечно же, существуют необходимые и достаточные условия одновременно (такие условия называются равносильными). Например:

Для того чтобы наступило лето, необходимо и достаточно, чтобы закончилась весна.

Действительно, если весна закончилась, то наступает лето, а если весна не закончилась, то лето наступить не может. То есть условия окончания весны и начала лета являются равносильными.

Понятия необходимого, достаточного и равносильного условий очень важны в таком разделе математики, как математическая логика. К тому же, они очень часто встречаются при доказательстве различных теорем.

Алгоритмы с повторениями

На практике часто встречаются задачи, в которых одно или несколько действий бывает необходимо повторить несколько раз, пока соблюдается некоторое заранее установленное условие.

Например, если вам необходимо перебрать ящик с яблоками, чтобы отделить гнилые от спелых, то нам необходимо повторять следующие действия:

1. Взять яблоко.

2. Посмотреть, не гнилое ли оно.

3. Если гнилое – выбросить, если нет – переложить в другой ящик.

Выполнять этот набор действий необходимо до тех пор, пока не закончатся яблоки в ящике.

Форма организации действий, при которой выполнение одной и той же последовательности действий повторяется, пока выполняется некоторое заранее установленное условие, называется циклом (повторением).

Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием.

Следует разрабатывать алгоритмы, не допускающие таких ситуаций.

Рассмотрим алгоритм работы будильника на телефоне, который должен зазвонить в 8:00 утра, а затем звонить через каждые 10 минут, до тех пор пока его не выключат.

В этом случае его блок-схема выглядит так: (блок-схему (рис. 9.) см. в конце конспекта)

На этом уроке мы обсудили три типа алгоритмов – линейные алгоритмы, алгоритмы с ветвлениями и алгоритмы с повторениями.

На следующем уроке мы на практике обсудим составление алгоритмов.

Решето Эратосфена

Вспомним определение простого натурального числа.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число. Остальные числа называются составными. При этом число 1 не является ни простым, ни составным.

Примеры простых чисел: 2, 3, 5, 7.

Примеры составных чисел: 4, 6, 8.

В III веке до нашей эры греческий математик Эратосфен предложил следующий алгоритм для нахождения всех простых чисел, меньших заданного числа п:

1. выписать все натуральные числа от 1 до n;

2. вычеркнуть 1;

3. подчеркнуть наименьшее из неотмеченных чисел;

4. вычеркнуть все числа, кратные подчеркнутому на предыдущем шаге числу;

5. если в списке имеются неотмеченные числа, то перейти к шагу 3, в противном случае все подчеркнутые числа – простые.

Это циклический алгоритм. При его выполнении повторение шагов 3–5 происходит, пока в исходном списке остаются неотмеченные числа.

Рассмотрим результат этого алгоритма. Выпишем все простые числа от 1 до 25.

Выпишем числа от 1 до 25.

Вычеркнем 1. Теперь подчеркнем двойку. Вычеркнем все четные числа.

Так как не все числа отмечены, то подчеркиваем 3. Теперь вычеркиваем все числа, которые делятся на 3.

Так как не все числа отмечены, то подчеркиваем 5. Теперь вычеркиваем число 25.

Так как не все числа отмечены, то подчеркиваем 7.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 11.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 13. Снова нельзя ничего вычеркнуть – подчеркиваем 17, затем 19 и 23.

Теперь все числа отмечены.

Получаем простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23.

Литература

1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.

3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.

На практике наиболее распространены следующие формы представления алгоритмов:

· словесная (записи на естественном языке);

· графическая (изображения из графических символов);

· псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

· программная (тексты на языках программирования).

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке. Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.

Алгоритм может быть следующим:

· задать два числа;

· если числа равны, то взять любое из них в качестве ответа и остановиться, в

противном случае продолжить выполнение алгоритма;

· определить большее из чисел;

· заменить большее из чисел разностью большего и меньшего из чисел;

· повторить алгоритм с шага 2.

Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи.

Словесный способ не имеет широкого распространения по следующим причинам:

· такие описания строго не формализуемы;

· страдают многословностью записей;

· допускают неоднозначность толкования отдельных предписаний.

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.

Такое графическое представление называется схемой алгоритма или блок-схемой.

При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий.

1)Блок начало-конец

Элемент отображает выход во внешнюю среду и вход из внешней среды (наиболее частое применение − начало и конец программы). Внутри фигуры записывается соответствующее действие.

2) Блок действия

Выполнение одной или нескольких операций, обработка данных любого вида (изменение значения данных, формы представления, расположения). Внутри фигуры записывают непосредственно сами операции, например, операцию присваивания: a = 10*b + c


3) Логический блок

Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента. Вход в элемент обозначается линией, входящей обычно в верхнюю вершину элемента. Если выходов два или три, то обычно каждый выход обозначается линией, выходящей из оставшихся вершин (боковых и нижней). Если выходов больше трех, то их следует показывать одной линией, выходящей из вершины (чаще нижней) элемента, которая затем разветвляется. Соответствующие результаты вычислений могут записываться рядом с линиями, отображающими эти пути. Примеры решения: в общем случае − сравнение (три выхода: >, <, =); в программировании − условные операторы if (два выхода: true, false) и case (множество выходов).

Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).

Типы алгоритмов

Разветвляющийся алгоритм - алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько параллельных ветвей алгоритма.

Линейный алгоритм - набор команд (указаний), выполняемых последовательно во времени друг за другом.

Циклический алгоритм - алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы - последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

Цель урока: повышение интереса к изучению предмета; воспитание навыка быстрого мышления; развитие творческой активности учащихся; развитие познавательных интересов.
Задачи урока: 1. Образовательные:
- Закрепить с учащимися понятия алгоритма, исполнителя, системы команд исполнителя, способы представления алгоритмов.
- Познакомить учащихся с типами алгоритмов: линейным, разветвляющимся, циклическим.
- Научить представлению алгоритмов в виде блок-схем.
2. Развивающие:
- Активизировать познавательную активность учащихся через мультимедийные средства обучения.
- Развивать образное, критическое, дивергентное мышление.
3. Воспитательные:
- Повышение мотивации учащихся на уроке.
- Достижение сознательного уровня усвоения материала учащимися.
- Формирование чувства коллективизма и здорового соперничества.
- Формирование алгоритмического мышления.
Требования к знаниям и умениям: - Знать типы алгоритмов.
- Знать понятия: линейный, разветвляющийся, циклический алгоритмы.
- Уметь применять полученные знания при выполнении практических заданий.
Тип урока: комбинированный.
Технология: формирование коммуникативной компетенции.
Методы: - частично-поисковый, практический;
- информационный (словесный);
- наглядно-иллюстративный.
Оборудование: Флипчарт по теме (приложение 1), компьютеры, ресурс

Технологическая карта ученика (приложение 2), разноуровневые карточки (приложение 3), локальная сеть NetOp.

Ход урока

I.Организационный момент.
1. Приветствие ребят. Здравствуйте, ребята! Садитесь! Какое у вас настроение? Если хорошее - улыбнитесь всем! Если нет - посмотрите друг на друга и улыбнитесь! Начнем урок! Я представила вам алгоритм в словесной форме. Посмотрите на доску. Этот же алгоритм изображен графически. Сегодня на уроке мы научимся с вами представлять типы алгоритмов с помощью блок - схем (страница флипчарта 1).
Эпиграфом к нашему уроку будут слова знаменитого французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.
2. Объявление целей урока.
II. Актуализация знаний учащихся

Но прежде чем приступим к изучению нового материала. Мы должны вспомнить, что изучали на прошлом уроке.

1. Проверка домашнего задания.
Проверить кроссворды, решенные учениками дома.

Ответы:
1. 1. графический
2. конечность
3. информация
4. исполнитель
5. алгоритм
6. программный
7. план
8. компьютер
9. инструмент
10. рисунок
11. шаг


Вариант 1. «Посадка саженца».

Вариант 2. Эпизод из сказки «Гуси-лебеди».

6. Домашнее задание.
1. Выучить конспект.
2. Нарисовать на А4 формате пример циклического алгоритма и блок - схему к сказке «Колобок».

7. Вопросы. 1. Какие типы алгоритмов различают?
2. Какие типы алгоритмов изображены на рисунках.

Приложение № 3

Разноуровневые карточки
1. Выполните задание № 1,2,3 по ресурсу
Заполнить таблицу двумя примерами на каждый тип алгоритма.
Составьте алгоритм в программе Paint, используя команды перемещения и копирования.
Вариант 1.(страница флипчарта 25).
«Посадка саженца».
Вариант 2.(страница флипчарта 26).
Эпизод из сказки «Гуси-лебеди».



Top