Учебное пособие метод динамического программирования. Введение в динамическое программирование. Создание стека индексов

), выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Метод динамического программирования сверху - это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

История

Словосочетание «динамическое программирование» впервые было использовано в -х годах Р. Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения задачи, «предшествующей» ей. В г. он уточнил это определение до современного. Первоначально эта область была основана, как системный анализ и инжиниринг, которая была признана IEEE . Вклад Беллмана в динамическое программирование был увековечен в названии уравнения Беллмана , центрального результата теории динамического программирования, который переформулирует оптимизационную задачу в рекурсивной форме.

Слово «программирование» в словосочетании «динамическое программирование» в действительности к "традиционному" программированию (написанию кода) почти никакого отношения не имеет и имеет смысл как в словосочетании «математическое программирование », которое является синонимом слова «оптимизация». Поэтому слово «программа» в данном контексте скорее означает оптимальную последовательность действий для получения решения задачи. К примеру, определенное расписание событий на выставке иногда называют программой. Программа в данном случае понимается как допустимая последовательность событий.

Идея динамического программирования

Нахождение кратчайшего пути в графе из одной вершины в другую, используя оптимальную подструктуру; прямая линия обозначает простое ребро; волнистая линия обозначает кратчайший путь между вершинами, которые она соединяет (промежуточные вершины пути не показаны); жирной линией обозначен итоговый кратчайший путь.

Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага.

  1. Разбиение задачи на подзадачи меньшего размера.
  2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм .
  3. Использование полученного решения подзадач для конструирования решения исходной задачи.

Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1).

Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи , и - даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали дважды. Если продолжать дальше и посчитать , то посчитается ещё два раза, так как для вычисления будут нужны опять и . Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решение для задач, которые он уже решал.

Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется кэширование . Можно проделывать и дальнейшие оптимизации - например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее.

Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

  • перекрывающиеся подзадачи;
  • оптимальная подструктура;
  • возможность запоминания решения часто встречающихся подзадач.

Динамическое программирование обычно придерживается двух подходов к решению задач:

  • нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
  • восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme , Common Lisp , Perl), а в некоторых требует дополнительных расширений (C++).

Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций , и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.

Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных - просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.

Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность . Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.

Классические задачи динамического программирования

Литература

  • Беллман Р. Динамическое программирование. - М.: Изд-во иностранной литературы, 1960.
  • Кормен, Т. , Лейзерсон, Ч. , Ривест, Р. , Штайн, К. Глава 15. Динамическое программирование // Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. - 2-е изд. - М .: Вильямс, 2005. - 1296 с. - ISBN 5-8459-0857-4
  • Sanjoy Dasgupta , Christos H. Papadimitriou, Umesh Vazirani Algorithms = Algorithms. - 1-е изд. - McGraw-Hill Science/Engineering/Math, 2006. - С. 336. - ISBN 0073523402
  • Акулич И.Л. Глава 4. Задачи динамического программирования // Математическое программирование в примерах и задачах. - М .: Высшая школа, 1986. - 319 с. - ISBN 5-06-002663-9 .
  • Bertele U., Brioshi F. Nonserial dynamic programming. - N.Y.: Academic Press, 1972. - 235 pp.
  • Щербина О. А. О несериальной модификации локального алгоритма декомпозиции задач дискретной оптимизации // Динамические системы, 2005, вып. 19.
  • Щербина О. А. Методологические аспекты динамического программирования // Динамические системы, 2007, вып. 22. - c.21-36.
  • Габасов Р., Кириллова Ф. М. Основы динамического программирования. - Мн.: Изд-во БГУ, 1975. - 262 с.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Динамическое программирование" в других словарях:

    динамическое программирование - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] динамическое программирование Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные … Справочник технического переводчика

    Динамическое программирование - раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений.… … Экономико-математический словарь

    Раздел математики, посвященный теории и методам решения многошаговых задач оптимального управления. В Д. п. для управляемых процессов среди всевозможных управлений ищется то, к рое доставляет экстремальное (наименьшее или наибольшее) значение… … Математическая энциклопедия

    Раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления (См. Оптимальное управление). В Д. п. для управляемых процессов среди всех возможных управлений ищется то, которое доставляет… … Большая советская энциклопедия

    динамическое программирование - dinaminis programavimas statusas T sritis automatika atitikmenys: angl. dynamic programming vok. dynamische Programmierung, f rus. динамическое программирование, n pranc. programmation dynamique, f … Automatikos terminų žodynas

    Раздел математич. программирования, изучающий многошаговые процессы поиска оптим. решения сложных задач. Применяется при составлении программ решения таких задач оптимизации, для к рых процесс поиска решения можно представить в виде нек рой… … Большой энциклопедический политехнический словарь

Динамическое программирование (иначе «динамическое планирование») есть особый метод оптимизации решений, специально приспособленный к так называемым «многошаговым» (или «многоэтапным») операциям.

Представим себе некоторую операцию О, распадающуюся на ряд последовательных «шагов» или «этапов», - например, деятельность отрасли промышленности в течение ряда хозяйственных лет; или же преодоление группой самолетов нескольких полос противовоздушной обороны; или последовательность тестов, применяемых при контроле аппаратуры. Некоторые операции (подобно вышеприведенным) расчленяются на шаги естественно; в некоторых членение приходится вводить искусственно - скажем, процесс наведения ракеты на цель можно условно разбить на этапы, каждый из которых занимает какое-то время

Итак, рассмотрим операцию О, состоящую из шагов (этапов). Пусть эффективность операции характеризуется каким-то показателем W, который мы для краткости будем в этой главе называть «выигрышем». Предположим, что выигрыш W за всю операцию складывается из выигрышей на отдельных шагах:

где - выигрыш на i-м шаге.

Если W обладает таким свойством, то его называют аддитивным критерием .

Операция О, о которой идет речь, представляет собой управляемый процесс, т. е. мы можем выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге и выигрыш за операцию в целом. Будем называть это решение «шаговым управлением». Совокупность всех шаговых управлений представляет собой управление операцией в целом. Обозначим его буквой , а шаговые управления - буквами :

Следует иметь в виду, что в общем случае - не числа, а, может быть, векторы, функции и т. д.

Требуется найти такое управление при котором выигрыш W обращается в максимум:

То управление при котором этот максимум достигается, будем называть оптимальным управлением. Оно состоит из совокупности оптимальных шаговых управлений:

Тот максимальный выигрыш, который достигается при этом управлении, мы будем обозначать :

Формула (12.5) читается так: величина W есть максимум из всех при разных управлениях (максимум берется по всем управлениям возможным в данных условиях). Иногда это последнее оговаривается в формуле и пишут:

Рассмотрим несколько примеров многошаговых операций и для каждого из них поясним, что понимается под «управлением» и каков «выигрыш» (показатель эффективности)

1. Планируется деятельность группы промышленных предприятий на период хозяйственных лет (-летку). В начале периода на развитие группы выделены какие-то средства которые должны быть как-то распределены между предприятиями. В процессе работы предприятия вложенные в него средства частично расходуются (амортизируются), а частично сохраняются и снова могут быть перераспределены. Каждое предприятие за год приносит доход, зависящий от того, сколько средств в него вложено. В начале каждого хозяйственного года имеющиеся в наличии средства перераспределяются между предприятиями. Ставится вопрос: какое количество средств в начале каждого года нужно выделять каждому предприятию, чтобы суммарный доход за лет был максимальным?

Выигрыш W (суммарный доход) представляет собой сумму доходов на отдельных шагах (годах):

значит, обладает свойством аддитивности.

Управление на шаге состоит в том, что в начале года предприятиям выделяются какие-то средства (первый индекс - номер шага, второй - номер предприятия). Таким образом, шаговое управление есть вектор с к составляющими:

Разумеется, величины в формуле (12.6) зависят от количества вложенных в предприятия средств.

Управление всей операцией состоит из совокупности всех шаговых управлений:

Требуется найти такое распределение средств по предприятиям и по годам (оптимальное управление при котором величина W обращается в максимум.

В этом примере шаговые управления были векторами; в последующих примерах они будут проще и выражаться просто числами.

2. Космическая ракета состоит из ступеней, а процесс ее вывода на орбиту - из этапов, в конце каждого из которых очередная ступень сбрасывается. На все ступени (без учета «полезного» веса кабины) выделен какой-то общий вес:

где - вес ступени.

В результате этапа (сгорания и сбрасывания ступени) ракета получает приращение скорости А, зависящее от веса данной ступени и суммарного веса всех оставшихся плюс вес кабины. Спрашивается, как нужно распределить вес G между ступенями, чтобы, скорость ракеты V при ее выводе на орбиту была максимальна?

В данном случае показатель эффективности (выигрыш) будет

где А - выигрыш (приращение скорости) на шаге.

Управление представляет собой совокупность весов всех ступеней

Оптимальным управлением будет то распределение весов по ступеням, при котором скорость V максимальна. В этом примере шаговое управление - одно число, а именно, вес данной ступени.

3. Владелец автомашины эксплуатирует ее в течение лет. В начале каждого года он может принять одно из трех решений:

1) продать машину и заменить ее новой;

2) ремонтировать ее и продолжать эксплуатацию;

3). продолжать эксплуатацию без ремонта.

Шаговое управление - выбор одного из этих трех решений. Непосредственно числами они не выражаются, но можно приписать первому численное значение 1, второму 2, третьему 3. Какие нужно принять решения по годам (т. е. как чередовать управления 1, 2,3), чтобы суммарные расходы на эксплуатацию, ремонт и приобретение новых машин были минимальны?

Показатель эффективности (в данном случае это не «выигрыш», а «проигрыш», но это неважно) равен

(12.10)

где - расходы в i-м году. Величину W требуется обратить в минимум.

что означает: первые два года эксплуатировать машину без ремонта, последующие три года ее ремонтировать, в начале шестого года продать, купить новую, затем снова эксплуатировать без ремонта и т. д. Любое управление представляет собой вектор (совокупность чисел):

где каждое из чисел имеет одно из трех значений: 1, 2 или 3. Нужно выбрать совокупность чисел (12.11), при которой величина (12.10) минимальна.

4. Прокладывается участок железнодорожного пути между пунктами А и В (рис. 12.1).

Местность пересеченная, включает лесистые зоны, холмы, болота, реку, через которую надо строить мост. Требуется так провести дорогу из в В, чтобы суммарные затраты на сооружение участка были минимальны.

В этой задаче, в отличие от трех предыдущих, нет естественного членения на шаги: его приходится вводить искусственно, для чего, например, можно отрезок АВ разделить на частей, провести через точки деления прямые, перпендикулярные АВ, и считать за «шаг» переход с одной такой прямой на другую. Если провести их достаточно близко друг от друга, то можно считать на каждом шаге участок пути прямолинейным. Шаговое управление на i-м шаге представляет собой угол , который составляет участок пути с прямой АВ. Управление всей операцией состоит из совокупности шаговых управлений:

Требуется выбрать такое (оптимальное) управление при котором суммарные затраты на сооружение всех участков минимальны:

(12.12)

Итак, мы рассмотрели несколько примеров многошаговых задач исследования операций. А теперь поговорим о том, как можно решать подобного рода задачи?

Любую многошаговую задачу можно решать по-разному: либо искать сразу все элементы решения на всех шагах, либо же строить оптимальное управление шаг за шагом, на каждом этапе расчета оптимизируя только один шаг. Обычно второй способ оптимизации оказывается проще, чем первый, особенно при большом числе шагов.

Такая идея постепенной, пошаговой оптимизации и лежит в основе метода динамического программирования. Оптимизация одного шага, как правило, проще оптимизации всего процесса: лучше, оказывается, много раз решить сравнительно простую задачу, чем один раз - сложную.

С первого взгляда идея может показаться довольно тривиальной.

В самом деле, чего казалось бы, проще: если трудно оптимизировать операцию в целом, разбить ее на ряд шагов. Каждый такой шаг будет отдельной, маленькой операцией, оптимизировать которую уже нетрудно. Надо выбрать на этом шаге такое управление, чтобы эффективность этого шага была максимальна. Не так ли?

Нет, вовсе не так! Принцип динамического программирования отнюдь не предполагает, что каждый шаг оптимизируется отдельно, независимо от других. Напротив, шаговое управление должно выбираться дальновидно, с учетом всех его последствий в будущем. Что толку, если мы выберем на данном шаге управление, при котором эффективность этого шага максимальна, если этот шаг лишит нас возможности хорошо выиграть на последующих шагах?

Пусть, например, планируется работа группы промышленных предприятий, из которых часть занята выпуском предметов потребления, а остальные производят для них машины. Задача операции - получить за лет максимальный объем выпуска предметов потребления. Допустим, планируются капиталовложения на первый год. Исходя из узких интересов этого шага (года), мы должны были бы все наличные средства вложить в производство предметов потребления. Но правильно ли будет такое решение с точки зрения эффективности операции в целом? Очевидно, нет. Это решение - расточительное, недальновидное. Имея в виду будущее, надо выделить какую-то долю средств и на производство машин. От этого объем продукции за первый год, конечно, снизится, зато будут созданы условия для его увеличения в последующие годы.

Еще пример. Допустим, что в задаче 4 (прокладка железнодорожного пути из А в В) мы прельстимся идеей сразу же устремиться по самому легкому (дешевому) направлению. Что толку от экономии на первом шаге, если в дальнейшем он заведет нас (буквально или фигурально) в «болото»?

Значит, планируя многошаговую операцию, надо выбирать управление на каждом шаге с учетом всех его будущих последствий на еще предстоящих шагах. Управление на шаге выбирается не так, чтобы выигрыш именно на данном шаге был максимален, а так, чтобы была максимальна сумма выигрышей на всех оставшихся до конца шагах плюс данный.

Однако из этого правила есть исключение. Среди всех шагов есть один, который может планироваться попросту, без оглядки на будущее. Какой это шаг? Очевидно, последний! Этот шаг, единственный из всех, можно планировать так, чтобы он сам, как таковой принес наибольшую выгоду.

Поэтому процесс динамического программирования обычно разворачивается от конца к началу: прежде всего планируется последний, шаг. А как его спланировать, если мы не знаем, чем кончился предпоследний? Т. е. не знаем условий, в которых мы приступаем к последнему шагу?

Вот тут-то и начинается самое главное. Планируя последний шаг, нужно сделать разные предположения о том, чем кончился предпоследний, шаг, и для каждого из этих предположений найти условное оптимальное управление на шаге («условное» потому, что оно выбирается исходя из условия, что предпоследний шаг кончился так-то, и так-то).

Предположим, что мы это сделали, и для каждого из возможных исходов предпоследнего шага знаем, условное оптимальное управление и соответствующий ему условный оптимальный выигрыш на шаге. Отлично! Теперь мы можем оптимизировать управление на предпоследнем, шаге. Снова сделаем все возможные предположения о том, чем кончился предыдущий, и найти не условно оптимальный, а просто оптимальный выигрыш .

В самом деле, пусть мы знаем, в каком состоянии была управляемая система (объект управления S) в начале первого шага. Тогда мы можем выбрать оптимальное управление на первом шаге. Применив его, мы изменим состояние системы на некоторое новое S и в этом состоянии мы подошли ко второму шагу. Тогда нам тоже известно условное оптимальное управление которое к концу второго шага переводит систему в состояние и т. д. Что касается оптимального выигрыша W за всю операцию, то он нам уже известен: ведь именно на основе его максимальности мы выбирали управление на первом шаге.

Таким образом, в процессе оптимизации управления методом динамического программирования многошаговый процесс «проходится» дважды: первый раз - от конца к началу, в результате чего находятся условные оптимальные управления и условные оптимальные выигрыши за оставшийся «хвост» процесса; второй раз - от начала к концу, когда нам остается только «прочитать» уже готовые рекомендации и найти безусловное оптимальное управление состоящее из оптимальных шаговых управлений

Первый этап - условной оптимизации - несравненно сложнее и длительнее второго. Второй этап почти не требует дополнительных вычислений.

Автор не льстит себя надеждой, что из такого описания метода динамического программирования читатель, не встречавшийся с ним до сих пор, поймет по-настоящему его идею. Истинное понимание возникает при рассмотрении конкретных примеров, к которым мы и перейдем.

Здравствуй, Хабрахабр. В настоящий момент я работаю над учебным пособием по олимпиадному программированию, один из параграфов которого посвящен динамическому программированию. Ниже приведена выдержка из данного параграфа. Пытаясь объяснить данную тему как можно проще, я постарался сложные моменты сопроводить иллюстрациями. Мне интересно ваше мнение о том, насколько понятным получился данный материал. Также буду рад советам, какие еще задачи стоит включить в данный раздел.

Во многих олимпиадных задачах по программированию решение с помощью рекурсии или полного перебора требует выполнения очень большого числа операций. Попытка решить такие задачи, например, полным перебором, приводит к превышению времени выполнения.

Однако среди переборных и некоторых других задач можно выделить класс задач, обладающих одним хорошим свойством: имея решения некоторых подзадач (например, для меньшего числа n ), можно практически без перебора найти решение исходной задачи.

Такие задачи решают методом динамического программирования, а под самим динамическим программированием понимают сведение задачи к подзадачам.

Последовательности

Классической задачей на последовательности является следующая.

Последовательность Фибоначчи F n задается формулами: F 1 = 1, F 2 = 1,
F n = F n - 1 + F n - 2 при n > 1. Необходимо найти F n по номеру n .

Один из способов решения, который может показаться логичным и эффективным, — решение с помощью рекурсии:

Int F(int n) { if (n < 2) return 1; else return F(n - 1) + F(n - 2); }
Используя такую функцию, мы будем решать задачу «с конца» — будем шаг за шагом уменьшать n , пока не дойдем до известных значений.

Но как можно заметить, такая, казалось бы, простая программа уже при n = 40 работает заметно долго. Это связано с тем, что одни и те же промежуточные данные вычисляются по несколько раз — число операций нарастает с той же скоростью, с какой растут числа Фибоначчи — экспоненциально.

Один из выходов из данной ситуации — сохранение уже найденных промежуточных результатов с целью их повторного использования:

Int F(int n) { if (A[n] != -1) return A[n]; if (n < 2) return 1; else { A[n] = F(n - 1) + F(n - 2); return A[n]; } }
Приведенное решение является корректным и эффективным. Но для данной задачи применимо и более простое решение:

F = 1; F = 1; for (i = 2; i < n; i++) F[i] = F + F;
Такое решение можно назвать решением «с начала» — мы первым делом заполняем известные значения, затем находим первое неизвестное значение (F 3), потом следующее и т.д., пока не дойдем до нужного.

Именно такое решение и является классическим для динамического программирования: мы сначала решили все подзадачи (нашли все F i для i < n ), затем, зная решения подзадач, нашли ответ (F n = F n - 1 + F n - 2 , F n - 1 и F n - 2 уже найдены).

Одномерное динамическое программирование

Чтобы лучше понять суть динамического программирования, сначала более формально определим понятия задачи и подзадачи.

Пусть исходная задача заключается в нахождении некоторого числа T при исходных данных n 1 , n 2 , ..., n k . То есть мы можем говорить о функции T (n 1 , n 2 , ..., n k ), значение которой и есть необходимый нам ответ. Тогда подзадачами будем считать задачи
T (i 1 , i 2 , ..., i k ) при i 1 < n 1 , i 2 < n 2 , ..., i k < n k .

Следующая задача одномерного динамического программирования встречается в различных вариациях.

При n < 32 полный перебор потребует нескольких секунд, а при n = 64 полный перебор не осуществим в принципе. Для решения задачи методом динамического программирования сведем исходную задачу к подзадачам.

При n = 1, n = 2 ответ очевиден. Допустим, что мы уже нашли K n - 1 , K n - 2 — число таких последовательностей длины n - 1 и n - 2.

Посмотрим, какой может быть последовательность длины n . Если последний ее символ равен 0, то первые n - 1 — любая правильная последовательность длины
n - 1 (не важно, заканчивается она нулем или единицей — следом идет 0). Таких последовательностей всего K n - 1 . Если последний символ равен 1, то предпоследний символ обязательно должен быть равен 0 (иначе будет две единицы подряд), а первые
n - 2 символа — любая правильная последовательность длины n - 2, число таких последовательностей равно K n - 2 .

Таким образом, K 1 = 2, K 2 = 3, K n = K n - 1 + K n - 2 при n > 2. То есть данная задача фактически сводится к нахождению чисел Фибоначчи.

Двумерное динамическое программирование

Классической задачей двумерного динамического программирования является задача о маршрутах на прямоугольном поле.
В разных формулировках необходимо посчитать число маршрутов или найти маршрут, который является лучшим в некотором смысле.

Приведем пару формулировок таких задач:

Задача 2. n *m клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.

Задача 3. Дано прямоугольное поле размером n *m клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута вычисляется как сумма чисел со всех посещенных клеток. Необходимо найти маршрут с минимальным весом.

Для всех таких задач характерным является то, что каждый отдельный маршрут не может пройти два или более раз по одной и той же клетке.

Рассмотрим более подробно задачу 2. В некоторую клетку с координатами (i ,j ) можно прийти только сверху или слева, то есть из клеток с координатами (i - 1, j ) и (i , j - 1):

Таким образом, для клетки (i , j ) число маршрутов A[i][j] будет равно
A[j] + A[i], то есть задача сводится к двум подзадачам. В данной реализации используется два параметра — i и j — поэтому применительно к данной задаче мы говорим о двумерном динамическом программировании.

Теперь мы можем пройти последовательно по строкам (или по столбцам) массива A, находя число маршрутов для текущей клетки по приведенной выше формуле. Предварительно в A необходимо поместить число 1.

В задаче 3 в клетку с координатами (i , j ) мы можем попасть из клеток с координатами
(i - 1, j), (i , j - 1) и (i - 1, j - 1). Допустим, что для каждой из этих трех клеток мы уже нашли маршрут минимального веса, а сами веса поместили в W[j], W[i],
W. Чтобы найти минимальный вес для (i , j ), необходимо выбрать минимальный из весов W[j], W[i], W и прибавить к нему число, записанное в текущей клетке:

W[i][j] = min(W[j], W[i], W) + A[i][j];

Данная задача осложнена тем, что необходимо найти не только минимальный вес, но и сам маршрут. Поэтому в другой массив мы дополнительно для каждой клетки будем записывать, с какой стороны в нее надо попасть.

На следующем рисунке приведен пример исходных данных и одного из шагов алгоритма.

В каждую из уже пройденных клеток ведет ровно одна стрелка. Эта стрелка показывает, с какой стороны необходимо прийти в эту клетку, чтобы получить минимальный вес, записанный в клетке.

После прохождения всего массива необходимо будет проследить сам маршрут из последней клетки, следуя по стрелкам в обратную сторону.

Задачи на подпоследовательности

Рассмотрим задачу о возрастающей подпоследовательности.

Задача 4. Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.

Начнем решать задачу с начала — будем искать ответ, начиная с первых членов данной последовательности. Для каждого номера i будем искать наибольшую возрастающую подпоследовательность, оканчивающуюся элементом в позиции i . Пусть исходная последовательность хранится в массиве A. В массиве L будем записывать длины максимальных подпоследовательностей, оканчивающихся текущим элементом. Пусть мы нашли все L[i] для 1 <= i <= k - 1. Теперь можно найти L[k] следующим образом. Просматриваем все элементы A[i] для 1 <= i < k - 1. Если
A[i] < A[k], то k -ый элемент может стать продолжением подпоследовательности, окончившейся элементом A[i]. Длина полученной подпоследовательности будет на 1 больше L[i]. Чтобы найти L[k], необходимо перебрать все i от 1 до k - 1:
L[k] = max(L[i]) + 1, где максимум берется по всем i таким, что A[i] < A[k] и
1 <= i < k .

Здесь максимум из пустого множества будем считать равным 0. В этом случае текущий элемент станет единственным в выбранной последовательности, а не будет продолжением одной из предыдущих. После заполнения массива L длина наибольшей возрастающей подпоследовательности будет равна максимальному элементу L.

Чтобы восстановить саму подпоследовательность, можно для каждого элемента также сохранять номер предыдущего выбранного элемента, например, в массив N.

Рассмотрим решение этой задачи на примере последовательности 2, 8, 5, 9, 12, 6. Поскольку до 2 нет ни одного элемента, то максимальная подпоследовательность содержит только один элемент — L = 1, а перед ним нет ни одного — N = 0. Далее,
2 < 8, поэтому 8 может стать продолжением последовательности с предыдущим элементом. Тогда L = 2, N = 1.

Меньше A = 5 только элемент A = 2, поэтому 5 может стать продолжением только одной подпоследовательности — той, которая содержит 2. Тогда
L = L + 1 = 2, N = 1, так как 2 стоит в позиции с номером 1. Аналогично выполняем еще три шага алгоритма и получаем окончательный результат.

Теперь выбираем максимальный элемент в массиве L и по массиву N восстанавливаем саму подпоследовательность 2, 5, 9, 12.

Еще одной классической задачей динамического программирования является задача о палиндромах.

Задача 5. Дана строка из заглавных букв латинского алфавита. Необходимо найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.

Обозначим данную строку через S, а ее символы — через S[i], 1 <= i <= n . Будем рассматривать возможные подстроки данной строки с i -го по j -ый символ, обозначим их через S (i , j ). Длины максимальных палиндромов для подстрок будем записывать в квадратный массив L: L[i][j] — длина максимального палиндрома, который можно получить из подстроки S (i , j ).

Начнем решать задачу с самых простых подстрок. Для строки из одного символа (то есть подстроки вида S (i , i )) ответ очевиден — ничего вычеркивать не надо, такая строка будет палиндромом. Для строки из двух символов S (i , i + 1) возможны два варианта: если символы равны, то мы имеем палиндром, ничего вычеркивать не надо. Если же символы не равны, то вычеркиваем любой.

Пусть теперь нам дана подстрока S (i , j ). Если первый (S[i]) и последний (S[j]) символы подстроки не совпадают, то один из них точно нужно вычеркнуть. Тогда у нас останется подстрока S (i , j - 1) или S (i + 1, j ) — то есть мы сведем задачу к подзадаче: L[i][j] = max(L[i], L[j]). Если же первый и последний символы равны, то мы можем оставить оба, но необходимо знать решение задачи S (i + 1, j - 1):
L[i][j] = L + 2.

Рассмотрим решение на примере строки ABACCBA. Первым делом заполняем диагональ массива единицами, они будут соответствовать подстрокам S (i , i ) из одного символа. Затем начинаем рассматривать подстроки длины два. Во всех подстроках, кроме S (4, 5), символы различны, поэтому в соответствующие ячейки запишем 1, а в L — 2.

Получается, что мы будем заполнять массив по диагоналям, начиная с главной диагонали, ведущей из левого верхнего угла в правый нижний. Для подстрок длины 3 получаются следующие значения: в подстроке ABA первая и последняя буквы равны, поэтому
L = L + 2. В остальных подстроках первая и последняя буквы различны.

BAC: L = max(L, L) = 1.
ACC: L = max(L, L) = 2.
CCB: L = max(L, L) = 2.
CBA: L = max(L, L) = 1.

Если же в задаче необходимо вывести не длину, а сам палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован (на рисунке для наглядности вместо числовых значений, кодирующих переходы, нарисованы соответствующие стрелки).

Раздел Динамическое программирование представлен следующими калькуляторами:

  1. Задача распределения инвестиций . Для реконструкции и модернизации производства на четырех предприятиях выделены денежные средства С = 80 ден. ед. По каждому предприятию известен возможный прирост f i (х) (i = 1, 4) выпуска продукции в зависимости от выделенной суммы.

В задачах динамического программирования экономический процесс зависит от времени (или от нескольких периодов времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование управляемых процессов и процессов, зависящих от времени. Поэтапное проведение оптимизации называется многошаговым процессом принятия решения. Экономический процесс называется управляемым, если можно влиять на ход его развития.

В основе метода динамического программирования (ДП) лежит принцип последовательной оптимизации: решение исходной задачи оптимизации большой размерности заменяется решением последовательности задач оптимизации малой размерности. Основным условием применимости метода ДП является возможность разбиения процесса принятия решений на ряд однотипных шагов или этапов, каждый из которых планируется отдельно, но с учетом результатов, полученных на других шагах. Например, деятельность отрасли промышленности в течение ряда хозяйственных лет или же последовательность тестов, применяемых при контроле аппаратуры, и т. д. Некоторые процессы (операции) расчленяются на шаги естественно, но существуют такие операции, которые приходится делить на этапы искусственно, например процесс наведения ракеты на цель.
Этот принцип гарантирует, что управление, выбранное на любом шаге, является не локально лучшим, а лучшим с точки зрения процесса в целом, так как это управление выбирается с учетом последствий на предстоящих шагах.

Рассмотрим общее описание задачи динамического программирования .
Пусть многошаговый процесс принятия решений разбивается на n шагов. Обозначим через ε 0 – начальное состояние системы, через ε 1 , ε 2 , … ε n – состояния системы после первого, второго, n -го шага. В общем случае состояние ε k – вектор (ε k 1 , …, ε k s ).
Управлением в многошаговом процессе называется совокупность решений (управляющих переменных) u k = (u k 1 , ..., u k r ), принимаемых на каждом шаге k и переводящих систему из состояния ε k -1 = (ε k- 1 1 , …, ε k -1 s ) в состояние ε k = (ε k 1 , …, ε k s ).
В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т. д. Совокупность решений, принимаемых в начале года, планируемого периода, по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т. д. является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т. е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.
Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т. д.). Под этапом обычно понимают хозяйственный год.
Обычно на управление на каждом шаге u k накладываются некоторые ограничения. Управления, удовлетворяющие этим ограничениям, называются допустимыми.
Предполагая, что показатель эффективности k -го шага процесса зависит от начального состояния на этом шаге k -1 и от управления на этом шаге u k , получим целевую функцию всего многошагового процесса в виде:
.

Сформулируем теперь задачу динамического программирования : «Определить совокупность допустимых управлений (u 1 , …, u n ), переводящих систему из начального состояния ε 0 в конечное состояние ε n и максимизирующих или минимизирующих показатель эффективности F ».
Управление, при котором достигается максимум (минимум) функции F называется оптимальным управлением u * = (u 1* ,…, u n *).
Если переменные управления u k принимают дискретные значения, то модель ДП называется дискретной . Если переменные u k изменяются непрерывно, то модель ДП называется непрерывной .
В зависимости от числа параметров состояния s и числа управляющих переменных r различают одномерные и многомерные задачи ДП.
Число шагов в задаче может быть конечным или бесконечным .

Прикладные задачи динамического программирования

  1. задача о планировании строительства объектов.



Top