Тактовая частота для современных компьютеров измеряется. На что влияет частота процессора

Утверждение:

Чем выше тактовая частота процессора, тем выше его производительность.


Скорость работы процессоров всегда сравнивали на основе их ведущей и самой доступной для понимания характеристики - тактовой частоты. Моду на это в 1984 году ввели маркетологи IBM PC, которые утверждали, что процессор Intel 8088 в их компьютере почти в пять раз превосходит по тактовой частоте MOS Technology 6502
из Apple II - а значит, он почти в пять раз быстрее. Той же логике в 90-х следовали Intel и Microsoft, утверждая, что Pentium производительнее PowerPC из компьютеров Apple только потому, что у него выше тактовая частота. После того как в конце 90-х к гонке подключилась AMD, компании пришлось ввести специальную маркировку, которая сопоставляла их процессоры с процессорами Intel. Большинство потребителей были уверены, что тактовая частота - главная характеристика, и Intel, делавшая ставку на её рост, только поддерживала их в этом убеждении.

ДЖОН СПУНЕР

журналист

«После выхода процессоров Pentium III, работающих на частоте до 667 МГц, компания AMD может утратить лидерство. Представленные
в этом месяце процессоры Athlon работают
с максимальной частотой 650 МГц. Но долго лидерство Intel не продлится. Как заявили представители AMD, к концу года они выпустят процессор с частотой 700 МГц».

Почему это не так:

Время, которое занимает выполнение операций, важнее тактовой частоты.


Тактовую частоту корректно сравнивать только
у процессоров одного модельного ряда с одинаковой архитектурой. Хотя частота Intel 8088 и была почти в пять раз выше, чем у MOS Technology 6502, на деле одна и та же операция могла занимать у Intel 8088 больше тактов, из-за чего преимущество в частоте нивелировалось. Так было и
в дальнейшем: сначала Apple, а потом и AMD пытались разоблачить «миф о мегагерцах». В 2006 году к ним наконец присоединилась и Intel, которая достигла предела тактовой частоты на архитектуре, которую тогда использовала в настольных процессорах, и сменила парадигму.

Сегодня число операций, которое выполняет процессор
за один такт, как никогда важнее тактовой частоты. Дело
в том, что чем выше частота, тем выше тепловыделение,
а потому создатели мобильных процессоров делают упор
на оптимизацию, а не сухие цифры. Миф, впрочем, никуда
не исчез, и даже эволюционировал: так, многие начали считать, что скорость работы процессора пропорциональна числу ядер в нём. Да и если назвать обывателю два процессора с разной тактовой частотой, то он всё равно
по инерции выберет тот, у которого больше мегагерц.

Наименование параметра Значение
Тема статьи: Тактовая частота.
Рубрика (тематическая категория) Компьютеры

Память, к которой может адресовываться CPU.

Степень интеграции микросхемы (чипа) показывает, сколько транзисторов может в нем уместиться. Для процессора Pentium (80586) Intel - это при­бли­зительно 3 млн. транзисторов на 3,5 см 2 .

Разрядность процессора показывает, сколько бит данных он мо­жет при­нять и обработать в своих регистрах за один раз (за один такт). Современные процессоры семейства Intel Pentium являются 32-разрядными

Рабочая тактовая частота определяет скорость, с которой осуществ­ляются операции в процессоре. Сегодня рабочие частоты процессоров до­ходят до более, чем 1 млрд. тактов в секунду (1 ГГц).

CPU находится в прямом контакте с оперативной памятью PC. Данные, которые обрабатывает CPU, должны временно располагаться в RAM и для дальнейшей об­работки снова бывают востребованы из памяти. Для CPU86/88 эта область адре­сации располагается максимум до 1 МБ, процессор 80486 может обес­печить доступ уже к 4 ГБ памяти.

Real Address Mode - режим реальной адресации (или просто реальный режим - Real Mode), полностью совместим с 8086. В этом режиме воз­можна адресация до 1 Мб физической памяти (на самом делœе, как и у 80286, почти на 64 Кбайт больше).

Protected Virtual Address Mode - защищенный режим виртуальной адре­сации (или просто защищенный режим - Protected Mode). В этом режиме про­цессор позволяет адресовать до 4 Гбайт физической памяти, через ко­торые при использовании механизма страничной адресации могут ото­бражаться до 64 Тбайт виртуальной памяти каждой задачи.

Существенным дополнением является Virtual 8086 Mode - режим вирту­ального процессора 8086. Этот режим является особым состоянием задачи за­щищенного режима, в котором процессор функционирует как 8086. На одном процессоре в таком режиме могут параллельно испол­няться несколько задач с изолированными друг от друга ресурсами.

Важным отличием элементов оперативной памяти от прочих запоминающих уст­ройств является время доступа, характеризующееся интервал времени, в тече­ние которого информация записывается в память или извлекается из нее. Время доступа для внешнего носителя данных, такого как жесткий диск, вы­ражается в миллисекундах, а для элемента памяти оно измеряется наносœекундами.

Дисководы (Floppy Disk Drive, FDD) являются старейшими периферийными устройствами PC. В качестве носителя информации в них приме­няются дискеты {Floppy) диаметрами 3,5" и размерами 5,25".

Для записи и чтения информации крайне важно разбиение дискеты на определœенные участки - создать логическую структуру. Это выполняется путем форматирования с помощью специальной команды, к примеру, для DOS - команда Format. Дискета разбивается на дорожки (Tracks) и сектора (Sectors) , на рис. показано это разбиение.

Основным критерием для оценки винчестера является его ёмкость, то есть максимальный объём данных который должна быть записан на носитель

При обращении к большим массивам данных магнитные головки должны пози­ционироваться на диске гораздо чаще, чем при обращении к небольшим массивам и данным, которые последовательно расположены на диске. Так что скорость чтения и записи определяется средним време­нем доступа (Average Seek Time) к различным объектам на диске. Для лучших IDE и SCSI HDD это время меньше 10 мс.

Скорость передачи данных предлагается в качестве второго па­раметра для оценки производительности винчестера. Важно заметить, что для современных моделœей она составляет 10 МБ/с.

Монитор является устройством для визуального отображения информации. Сигналы, которые получает монитор (числа, символы, графическую информацию и сигналы синхронизации), формируются видеокартой. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, монитор и видеокарта представляют из себясвоеобразный тандем, который для оптимальной работы должен быть настроен соответствующим образом.

Видеокарта.

Для большинства применений разрешение стандарта VGA вполне достаточ­но. При этом программы, ориентированные на графику, работают значительно лучше и быстрее (бывают случаи, когда они даже не инсталлируются, еслг ус­тановленное разрешение или видеокарта не соответствуют их возможно­стям), в случае если информационная плотность экрана выше. Для этого крайне важно повы­шать разрешение. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, стандартVGA развился в так назы­ваемый стандарт Super VGA (SVGA). Стандартное разрешение этого режиме состав­ляет 800х600 пикселов.

Отметим закономерность: при объёме видеопамяти 256 Кб и SVGA-раз­реше­нии можно обеспечить только 16 цветов; 512 Кб видеопамяти дают возмож­ность отобразить уже 256 цветовых оттенков при том же разреше­нии. Карты, имеющие 1 Мб памяти, а это сейчас уже стало обычным явле­нием, позволяют при этом же разрешении достичь отображения 32768, 65536 (HiColor) или даже 16,7 млн. (TrueColor) цветовых оттенков.

По современным ме­дико-психологическим оценкам глаз человека не воспринимает мерцания эк­рана, связанные с обновлением изображения, только при частоте вертикаль­ной развертки не менее 70 Гц. При увеличенном разрешении изображение на экране монитора начинает мерцать, что сильно повышает утомляемость и от­рицательно сказывается на зрении.

Основными потребительскими параметрами мониторов являют­ся размер экрана, шаг маски экрана, максимальная частота регенера­ции изображения и класс защиты.

Наиболее удобны и универсальны мониторы с размером экрана по диаго­нали 15 и 17 дюймов. Для работы с графикой используются, мониторы и с большими размерами экрана (19-21 дюйм).

Шаг маски экрана определяет четкость изображения (разреша­ющую спо­собность). Сегодня используется шаг 0,25-0,27 мм. Все мониторы с зерном более 0,28 мм относятся к категории "дешевых" и "грубых". Лучшие мониторы имеют зерно 0,26 мм, а у самого качественного известного нам монитора (и, естественно, самого дорогого) эта величина равна 0,21 мм.

Частота регенерации изображения также определяет четкость и устойчи­вость изображения и должна быть не ниже 75 Гц.

Класс защиты определяет соответствие монитора требованиям техники безопасности. Выполнение наиболее жестких требований к безопасности ра­боты обеспечивает стандарт ТСО-99.

Свойства изображения зависят не только от монитора, но и err свойств и настроек платы, размещенной в системном блоке (видео­адаптера). Монитор и видеоадаптер должны соответствовать друг другу (к примеру, современный видеоадаптер должен иметь память не менее 4 Мбайт).

Скажем несколько слов о торговых обозначениях. В каталогах и объявле­ниях на продажу компьютеров получили распространение особые обозначе­ния его характеристик. Метод обозначения типа ком­пьютера, принятый в большинстве объявлений, рассмотрим на конк­ретном примере:

PIII-600-Intel BX/64/6,4Gb/SVGA 8Mb/CD/SB16/ATX

Здесь PHI - тип процессора - Pentium III;

600 - тактовая частота процессора в МГц;

ВХ - тип материнской платы;

64 - объём оперативной памяти в Мбайт;

6,4Gb - объём жесткого диска - 6,4 Гбайт;

SVGA - тип видеокарты;

8Mb - объём видеопамяти в Мбайт;

CD - обозначает наличие дисковода компакт-дисков;

SB16 - тип звуковой карты (Sound Blaster);

Тактовая частота. - понятие и виды. Классификация и особенности категории "Тактовая частота." 2017, 2018.

CPU – central processing unit, или центральное обрабатывающее устройство. Представляет собой интегральную схему, которая выполняет машинные инструкции. Внешне современный ЦП выглядит как небольшой блок размером около 4-5 см с контактами-ножками на нижней части. Хоть и принято называть этот блок , сама интегральная схема находится внутри этого корпуса и представляет собой кристалл кремния, на который с помощью литографии наносятся электронные компоненты.

Верхняя часть корпуса ЦП служит для отвода тепла, которое образуется в результате работы миллиарда транзисторов. На нижней части расположены контакты, которые нужны для соединения чипа с материнской платой с помощью сокета - определённого разъёма. ЦП - самая производительная часть компьютера.

Тактовая частота как важный параметр работы процессора, и на что она влияет

Производительность процессора принято оценивать по его тактовой частоте. Это количество операций или тактов, которые может произвести ЦП за секунду. По сути, время, за которое процессор обрабатывает информацию. Вся загвоздка заключается в том, что разные архитектуры и устройство ЦП могут выполнять операции за различное количество тактов. То есть, одному ЦП для определённой задачи может понадобиться один такт, а другому - 4. Таким образом, первый может оказаться более эффективным со значением в 200 МГц, против второго с показателем в 600 МГц.

То есть тактовая частота, по сути, не даёт полного определения производительности процессора, что обычно позиционируется многими именно так. Но мы привыкли оценивать её из-за более-менее устоявшихся норм. Например, для современных моделей актуальный разбег в цифрах составляет от 2,5 до 3,7 ГГц, а нередко и выше. Естественно, что чем больше значение, тем лучше. Однако это не означает, что на рынке не существует процессора с меньшей частотой, но работающего гораздо эффективней.

Принцип действия генератора тактовой частоты

Все компоненты ПК работают с разной скоростью. Например, системная шина может быть 100 МГц, ЦП − 2,8 ГГц, а оперативная память - 800 МГц. Базовый показатель для системы задаёт генератор тактовых импульсов.

Чаще всего в современных компьютерах используется программируемая микросхема генерации, которая определяет значение для каждого компонента в отдельности. Принцип действия простейшего генератора тактовых импульсов заключается в вырабатывании электрических импульсов с определённым временным интервалом. Самый наглядный пример использования генератора - электронные часы. С помощью подсчёта тактов формируются секунды, из них − уже минуты и затем часы. О том, что такое Гигагерцы, Мегагерцы и т.д., мы расскажем чуть позже.

Как скорость работы компьютера и ноутбука зависит от тактовой частоты

Частота работы процессора отвечает за количество тактов, которое может выполнить компьютер в одну секунду, что, в свою очередь, отражает производительность. Однако не стоит забывать о том, что разные архитектуры используют различное количество тактов для решения одной задачи. То есть, «меряться показателями» актуально в рамках хотя бы одного класса процессоров.

На что влияет тактовая частота одноядерного процессора в компьютере и ноутбуке

Одноядерные ЦП уже редко где можно встретить в природе. Но для примера их использовать можно. Одно ядро процессора содержит в своём составе как минимум входящее в него арифметико-логическое устройство, набор регистров, пару уровней кэша и сопроцессор.

Частота, с которой все эти компоненты выполняют свои задачи, напрямую влияет на общую производительность ЦП. Но, опять же, при относительно схожей архитектуре и механизме выполнения команд.

На что влияет количество ядер в ноутбуке

Показатели ядер ЦП не складывается. То есть если 4 ядра работают на 2 ГГц, то это не значит, что их общее значение равно 8 ГГц. Потому что задачи в многоядерных архитектурах выполняются параллельно. То есть, определённый набор команд раздаётся ядрам по частям, а после выполнения каждой формируется общий ответ.

Таким образом, определённая задача может быть выполнена быстрее. Вся проблема заключается в том, что не все программные обеспечения умеют работать с несколькими потоками одновременно. То есть, до сих пор большинство приложений, по сути, задействует всего лишь одно ядро. Существуют, конечно, механизмы на уровне операционной системы, которые могут распараллеливать задачи на разные ядра, например, одно приложение загружает одно ядро, другое - второе и т.д. Но на это также требуются ресурсы системы. Но, в общем, оптимизированные программы и игры показывают гораздо большую производительность в многоядерных системах.

В чём измеряется тактовая частота процессора

Единица измерения Герц обычно показывает количество выполнения периодических процессов за одну секунду. Это и стало идеальным решением для того, в каких единицах будет измеряться тактовая частота процессора. Теперь работа всех чипов стала измеряться в Герцах. Ну, сейчас уже − ГГц. Гига - это такая приставка, показывающая, что здесь содержится 1000000000 Герц. За всю историю ПК приставки часто менялись - КГц, затем МГц, и сейчас наиболее актуальна ГГц. В спецификациях ЦП можно встретить и английские аббревиатуры - MHz или GHz. Обозначают такие приставки то же, что и в кириллице.

Как узнать частоту процессора своего компьютера

Для операционной системы Windows существует несколько простых способов, как штатных, так и с помощью сторонних программ. Самый простой и очевидный - щёлкнуть правой кнопкой по значку «Мой компьютер» и зайти в его свойства. Рядом с именем ЦП и его характеристиками будет указана и его частота.

Из сторонних решений можно использовать небольшую, но известную программку CPU-Z. Её лишь нужно скачать, установить и запустить. В главном окне она покажет текущую тактовую частоту. Кроме этих данных, она отображает и много другой полезной информации.

Программа CPU-Z

Какими способами можно увеличить производительность

Для того чтобы , существуют два основных способа: увеличить множитель и частоту системной шины. Множитель - это коэффициент, показывающий отношение базовой частоты процессора к базовому показателю системной шины.

Он устанавливается заводом изготовителем и в конечном устройстве может быть либо заблокирован для изменений, либо разблокирован. Если возможность изменить множитель есть, то значит, можно увеличить и частоту работы процессора, без внесения изменений в работу других компонентов. Но на практике такой подход не даёт эффективного прироста, так как остальные просто не успевают за ЦП. Изменение показателя системной шины приведёт к увеличению значений всех компонентов: процессора, оперативной памяти, северного и южного мостов. Это наиболее простой и эффективный способ разгона компьютера.

Разогнать ПК в целом можно и с помощью повышения напряжения, которое увеличит скорость работы транзисторов ЦП, а вместе с этим и его частоту. Но такой способ довольно сложный и опасный для новичков. Используют его в основном опытные в разгоне и электронике люди.

Процессор является пожалуй наиболее важной комплектующей частью компьютера, ведь именно он выполняет обработку данных. К одной из наиболее важных характеристик является тактовая частота процессора , которая указывает на количество выполняемых операций за одну секунду. Однако подобное определение для этого параметра довольно скудное, чтобы понять на самом деле его важность, поэтому постараемся более подробно разобраться в этом вопросе.


Научное определение тактовой частоты звучит следующим образом: это количество операций, которые могут обрабатываться в течение одной секунды и измеряется в Герцах. Но почему, скажут многие, за основу была принята именно эта единица измерения? В физике эта величина отображает количество колебаний за определенный промежуток времени, здесь же по сути все идентично, только вместо колебаний рассчитывается количество операций, то есть повторяющаяся величина за определенный интервал времени.

Если говорить конкретно о процессорах, то в нем производятся не идентичные операции, здесь рассчитываются всевозможные параметры. Ну а соответственно их суммарное количество и является тактовой частотой.

Сейчас технические возможности процессора находятся на высочайшем уровне, поэтому величина Герц не используется, а здесь более приемлемо использовать мегагерцы или гигагерцы. Этот шаг предпринят потому, чтобы не дописывать огромное количество нулей, тем самым упрощая восприятие человеком величины (см. таблицу).

Каким образом рассчитывается тактовая частота?

Для того, чтобы это понять, необходимо хоть чуть-чуть разбираться в физике, однако постараемся раскрыть тему «человеческим» языком, чтобы этот вопрос был понятен любому пользователю. Для понимания этого сложного вычислительного процесса, необходимо привести список комплектующих процессора, которые так или иначе влияют на этот параметр:

  • тактовый резонатор – изготовлен из кристалла кварца, который размещается в специальной защитной оболочке;
  • тактовый генератор – деталь, которая совершает преобразование колебаний в импульсы;
  • шина данных.

Вследствие подачи напряжения на тактовый резонатор, он образует колебания электрического тока.

Далее эти колебания передаются на тактовый генератор, который преобразовывает их в импульсы. Посредством шины данных, производится их передача, а результат вычислений уже подается непосредственно пользователю.

По такой методике и выполняется расчет тактовой частоты. И хоть все вроде бы предельно понятно, множество людей неправильно воспринимают эти вычисления, а соответственно и интерпретация ошибочна. Прежде всего это связано с тем, если процессор имеет не одно ядро, а несколько.

Каким образом тактовая частота связана с ядрами?

По сути, многоядерный процессор ничем не отличается от одноядерного, кроме того, что в нем содержится не один тактовый резонатор, а два и более. Для совместной работы они соединяются дополнительной шиной данных.

И именно здесь происходит заблуждение людей: тактовая частота нескольких ядер не суммируется. Просто при обработке данных производится перераспределение нагрузки на каждое из ядер, но это совершенно не обозначает, что это будет выполняться строго пропорционально, да и скорость обработки от этого не увеличивается. Для примера, существуют некоторые игры, в которых разработчики вовсе не допускают возможность перераспределения нагрузки по ядрам и игрушка работает лишь на одном.

Для примера рассмотрим случай с четырьмя пешеходами. Они идут максимально возможным шагом, рядом друг с другом и кто-то из них несет тяжелую ношу. Если он начинает уставать, другой может взять эту поклажу, чтобы не терять скорость, но при этом они не станут в целом идти быстрее и раньше достичь конечной точки, ведь все и так передвигаются на пределе своих возможностей.

Кстати говоря, при , количество ядер конечно же играет роль. Да и производители стали устанавливать все большее их количество, но при этом следует помнить, что шина данных может банально не справляться и производительность может не то, что увеличиться, а и значительно уступать процессорам с меньшим количеством ядер. Например, в данный момент компания Intel выпускает процессоры I7, в которых может быть размещено всего два ядра, при этом он будет обрабатывать данные гораздо быстрее, чем даже восьми ядерными (как правило данная компания и не выпускала моделей с таким количеством ядер, процессоры AMD действительно бывают и десяти ядерными). Разработчики просто делают упор не только на увеличении тактовой частоты, но и на архитектуре процессора в целом. Это может касаться, как увеличения шины данных между тактовыми резонаторами, так и других аспектов.

Разрядность процессора - это число одновременно обрабаты­ваемых процессором битов, поэтому процессор может быть 8-, 16-, 32-, 64-разрядным. Чем больше разрядность процессора, тем больше информации он может обработать.Разрядность процессора измеряют в битах. Иногда уточняют и разрядность шины адреса. Она показывает, сколько ячеек (адресов) внутренней памяти может быть использовано данным процессором (так называемое адресное пространство процессора).

Тактовая частота количество тактов (элементарных действий), выполняемых процессором в секунду. Тактовая частота измеряется в мегагерцах (1 МГц - миллион тактов в секунду) или гигагерцах (1 ГГц- миллиард тактов в секунду). Очевидно, что тактовая частота влияет на скорость работы, быс­тродействие процессора. Чем она выше, тем быстрее работает процессор и тем больше информации он может обработать. Повышение тактовой час­тоты происходит от одной модели процессора к другой. Например, первые модели процессоров Intel (8088) работали с тактовой частотой 8 МГц, а сов­ременные (Pentium IV) - до 4 ГГц.

Многоядерный процессор , т.е. может состоять из нескольких процессоров, объединённых в одном корпусе.

Устройства ввода

Устройства ввода предназначены для ввода информации от пользователя в компьютер.

Человек получает информацию из окружающего мира с помощью органов чувств: зрения, слуха, обоняния, осязания, вкуса. Однако человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в состав компьютера должны входить специальные устройства ввода и вывода информации.

Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, «переводят» информацию с машинного языка в формы, доступные для человеческого восприятия.

Устройства ввода устройства с помощью которых человек вводит информацию в ЭВМ.

Клавиатура –устройство для ручного ввода числовой и текстовой информации в ЭВМ от пользователя.

Световое перо – специальная ручка с помощью которой можно рисовать на экране ЭВМ.

Мышь – манипулятор для ввода информации и работы с графическим интерфейсом.

Трекбол - аналогично мыши, но выполнен в форме шара. Используется в основном портативных ПК.

Тачпад сенсорная панель, чувствительная к нажатию пальцев.

Сканер – для ввода в компьютер фотографий, рисунков.

Джойстик – игровой манипулятор.

Цифровые камеры (фотоаппараты и видеокамеры) – формируют изображения в компьютерном формате (цифровом формате, имеют память, аналогичную компьютерной.)

Микрофон для ввода звуковой информации, подключается к входу звуковой карты.

Устройства вывода

Устройства вывода предназначены для вывода информации из памяти ЭВМ.

Монитор – устройство для вывода информации на экран.

Принтер устройство для распечатки информации на бумагу.

Графопостроитель (плоттер) - устройство для вывода на бумагу сложных чертежей, схем, плакатов большого формата (А1). Принцип действия плоттера такой же, как и у струйного принтера.

Акустические колонки или наушники - используются для вывода звука и подключаются к выходу звуковой пла­ты. Звуковая плата - это наиболее позднее устройство персонального ком­пьютера, которое выполняет вычислительные операции, связанные с обра­боткой звука, речи, музыки.

Стример – устройство для записи информации на магнитную ленту с компьютера, (на мини –кассеты с большой емкостью от 0,5 Гбайт до 2 Гбайт) т.е. это магнитофон со специальными возможностями.

Устройства, выполняющие одновременно функции и ввода и вывода информации.

Звуковая приставка – комплекс устройств для воспроизведения звука, для записи звука в программы. Включает звуковую плату, звуковые колонки, микрофон.

Модем – устройство для обмена информацией между компьютерами через телефонную сеть.

Факс-модем – устройство, сочетающее возможности модема и средства для обмена изображениями с другими факсами через обычные телефонные аппараты.

НГМД, НЖМД, НМЛ – совместные устройства для ввода и вывода информации на магнитные носители (гибкий диск, жесткий диск, лента).

Магистрально – модульный принцип построения компьютера

Связь и обмен информацией между отдельными устройствами компьютера производится с помощью информационной магистрали, которую обычно называют шиной. Конструктивно она выполнена заодно с платой. Магистраль можно представить себе как пучок проводов, к которому подсоединены все устройства ЭВМ. Посылая по магистрали электрические сигналы, любой модуль ЭВМ может передавать информацию другим модулям.


Шина данных (8, 16, 32, 64 бита)

Шина адреса (16, 20, 24, 32, 36 битов) МАГИСТРАЛЬ

Шина управления

Клавиатура

Клавиатура предназначена для ручного ввода информации в компьютер от пользователя. Стандартная клавиатура содержит 101 (104) клавиши.

Число клавиш на клавиатурах может несколько отличаться, но назначение одинаковых клавиш на разных клавиатурах совпадает.




Top