Самодельные измерительные приборы. Авометр. Измерительные приборы

Этот прибор, измеритель ESR-RLCF , собирал в количестве четырех штук, работают все замечательно и ежедневно. Он обладает большой точностью измерения, имеется программная коррекция нуля, простой в налаживании. До этого собирал много разных приборов на микроконтроллерах, но всем им к этому очень далеко. Уделить надо только должное внимание катушке индуктивности. Она должна быть большой и намотана как можно толстым проводом.

Схема универсального измерительного прибора

Возможности измерителя

  • ESR электролитических конденсаторов - 0-50 Ом
  • Ёмкость электролитических конденсаторов - 0.33-60 000мкФ
  • Ёмкость неэлектролитических конденсаторов - 1 пФ - 1 мкФ
  • Индуктивность - 0.1 мкГн - 1 Гн
  • Частоту - до 50 МГц
  • Напряжение питания прибора - батарея 7-9 В
  • Ток потребления - 15-25 мА

В режиме ESR им можно измерять постоянные сопротивления 0.001 - 100 Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно, так как измерение производится в импульсном режиме и измеряемое сопротивление шунтируется. Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» при этом измерение производится при постоянном токе 10мА. В этом режиме диапазон измеряемых сопротивлений равен 0.001 - 20 Ом.

В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+». Есть индикация разряда батареи. Автоматическое отключение - около 4х минут. По истечении времени простоя ~ 4 мин, загорается надпись "StBy" и в течении 10 сек, можно нажать кнопку "+" и продолжится работа в том же режиме.


Как пользоваться прибором

  • Включение/ выключение - кратковременное нажатие кнопок “on/off”.
  • Переключение режимов - “ESR/C_R” - “Lx/Cx” - “Fx/Px” - кнопкой “SET”.
  • После включения прибор переходит в режим измерения ESR/C. В этом режиме производится одновременное измерение ESR и ёмкости электролитических конденсаторов или постоянных сопротивлений 0 - 100 Ом. При нажатой кнопке «+», измерение сопротивлений 0.001 - 20 Ом, измерение производится при постоянном токе 10 мА.
  • Установка нуля необходима, каждый раз при замене щупов или при измерении с помощью адаптера. Установка нуля производится автоматически, по нажатию соответствующих кнопок. Для этого замыкаем щупы, нажимаем и удерживаем кнопку “-”. На дисплее появится значение АЦП без обработки. Если значения на дисплее отличаются более +/-1, нажать кнопку “SET”, и запишется правильное значение “EE>xxx<”.
  • Для режима измерения постоянных сопротивлений, также необходима установка нуля. Для этого замыкаем щупы, нажимаем и удерживаем кнопки “+” и “-”. Если значения на дисплее отличаются более +/-1, нажать кнопку “SET”, и запишется правильное значение “EE>xxx<”.

Конструкция щупа

В качестве щупа, использован металлический штекер типа «тюльпан». К центральному выводу припаяна игла. Боковой уплотнитель - чехол от одноразового шприца. Из доступного материала для изготовления иглы можно использовать латунный стержень диаметром 3 мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Детали прибора

  • ЖК индикатор на основе контроллера HD44780, 2 строки по 16 знаков или 2 строки по 8 знаков.
  • Транзистор PMBS3904 - любой N-P-N, близкий по параметрам.
  • Транзисторы BC807 - любые P-N-P, близкие по параметрам.
  • Полевой транзистор P45N02 - подходит практически любой из материнской платы компьютера.
  • Резисторы в цепях стабилизаторов тока и DA1 - R1, R3, R6, R7, R13, R14, R15, должны быть такими, как указано на схеме, остальные можно близкими по номиналу.
  • Резисторы R22, R23, в большинстве случаев не нужны, при этом вывод «3» индикатора следует подключить к корпусу - это будет соответствовать максимальной контрастности индикатора.
  • Контур L101 - должен быть обязательно подстраиваемый, индуктивность 100 мкГн при среднем положении сердечника.
  • С101 - 430-650 пФ с низким ТКЕ, К31-11-2-Г - можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
  • С102, С104 4-10 мкФ SMD - можно найти в любой старой компьютерной материнской плате.
  • Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
  • Микросхема DD101 - 74HC132, 74HCT132, 74AC132 - они также применяются в некоторых материнских платах.

Обсудить статью УНИВЕРСАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР

VII городская научно – практическая конференция «Шаг в будущее»

История измерений и простые измерительные приборы своими руками

Выполнил : Антаков Евгений обучающийся МБОУ СОШ № 4,

Научный руководитель : Осиик Т.И. учитель начальных классов МБОУ СОШ № 4 г. Полярные Зори


Меня зовут Антаков Женя, мне 9 лет.

Я учусь в третьем классе, занимаюсь плаванием, дзюдо и английским языком.

Хочу стать изобретателем, когда вырасту.


Цель проекта : - изучить историю измерений времени, массы, температуры и влажности и смоделировать простейшие измерительные приборы из подручных материалов.

Гипотеза : я предположил, что простейшие измерительные приборы можно смоделировать самостоятельно из подручных материалов.

Задачи проекта :

- изучить историю измерений различных величин;

Ознакомится с устройством измерительных приборов;

Смоделировать некоторые измерительные приборы;

Определить возможность практического применения самодельных измерительных приборов.


Научная статья

1. Измерение длины и массы

С необходимостью определять расстояния, длины предметов, время, площади, объемы и другие величины люди сталкивались с древних времен.

Наши предки в качестве средств измерений длины использовали собственный рост, длину руки, ладони, стопы.

Для определения дальних расстояний использовались самые различные способы (дальность полета стрелы, «трубки», буки и т.п.)

Подобные способы не очень удобны: результаты таких измерений всегда различаются, поскольку зависят от размеров тела, от силы стрелка, зоркости и т.п.

Поэтому постепенно стали появляться строгие единицы измерения, эталоны массы, длины.

Один из древнейших измерительных приборов – весы. Историки считают, что первые весы появились более 6 тысяч лет назад.

Простейшая модель весов – в виде равноплечного коромысла с подвешенными чашками широко использовалась в Древнем Вавилоне и Египте.


Организация исследования

  • Коромысловые весы из вешалки

В своей работе я решил попробовать собрать простую модель чашечных весов, с помощью которой можно проводить взвешивание небольших предметов, продуктов и т.п.

Я взял обычную вешалку, закрепил ее на подставке, к плечикам привязал пластиковые стаканчики. Вертикальной линией обозначил положение равновесия.

Чтобы определять массу, нужны гири. Я решил использовать вместо них обычные монеты. Такие «гирьки» всегда под рукой, и достаточно один раз определить их вес, чтобы использовать для взвешивания на моих весах.

5 руб

50 коп

10 руб

1 руб


Организация исследования

Опыты с коромысловыми весами

1 . Шкала весов

Используя разные монеты, нанес на лист бумаги отметки, соответствующие весу монеток

2. Взвешивание

Горсть конфет – уравновесил с помощью 11 разных монеток, общим весом 47 граммов

Контрольное взвешивание – 48 граммов

Печенье - уравновесил 10 монетами весом 30 граммов На контрольных весах – 31 грамм

Вывод: из простых предметов я собрал весы, с помощью которых можно проводить взвешивание с точностью до 1-2 граммов


Научная статья

2. Измерение времени

В глубокой древности люди ощущали ход времени по

смене дня и ночи и времен года и пытались его измерять.

Самыми первыми приборами для определения времени были солнечные часы.

В Древнем Китае для определения промежутков времени использовали «часы», состоявшие из пропитанного маслом шнура, на котором через равные промежутки завязывали узлы.

Когда пламя достигало очередного узла, это означало, что прошел определенный отрезок времени.

По такому же принципу действовали свечные часы и масляные лампы с отметками.

Позже люди придумали простейшие устройства – песочные и водяные часы. Вода, масло или песок равномерно перетекают из сосуда в сосуд, это свойство и позволяет отмерять определенные промежутки времени.

С развитием механики в XIV - XV веках появились часы с заводом и маятником.


Организация исследования

  • Водяные часы из пластиковых бутылочек

Для этого опыта я использовал две пластиковые бутылки объемом 0.5 литра и трубочки для коктейля.

Крышки соединил между собой при помощи двустороннего скотча и сделал два отверстия, в которые вставил трубочки.

В одну из бутылок налил подкрашенную воду и закрутил крышки.

Если всю конструкцию перевернуть, то жидкость по одной из трубочек переливается вниз, а вторая трубочка необходима для того, чтобы воздух поднимался в верхнюю бутылку


Организация исследования

Опыты с водяными часами

Бутылочка заполнена подкрашенной водой

Бутылочка заполнена растительным маслом

Время перетекания жидкости – 30 секунд Вода перетекает быстро и равномерно

Время перетекания жидкости – 7 мин 17 сек

Количество масла подобрано так, чтобы время перетекания жидкости было не более 5 минут

На бутылочки нанесли шкалу – отметки через каждые 30 секунд

Чем масла меньше в верхней бутылке, тем медленнее оно стекает вниз, и расстояния между отметками становятся все меньше.

Вывод: у меня получились часы, с помощью которых можно определять промежутки времени от 30 секунд до 5 минут


Научная статья

3. Измерение температуры

Человек может различать тепло и холод, но точную температуру при этом не знает.

Первый термометр изобрел итальянец Галилео Галилей: стеклянная трубочка наполняется водой больше или меньше в зависимости от того, как сильно расширяется в ней горячий воздух или сжимается холодный.

Позднее на трубку были нанесены деления, то есть шкала.

Первый ртутный термометр предложил Фаренгейт в 1714 году, нижней точкой он считал температуру замерзания солевого раствора

Привычную нам шкалу предложил шведский ученый Андрес Цельсий.

За нижнюю точку (0 градусов) принята температура таяния льда, а за 100 градусов – температура кипения воды


Организация исследования

  • Водяной термометр

Термометр можно собрать по простой схеме из нескольких элементов – колба(бутылочка) с подкрашенной жидкостью, трубочка, лист бумаги для шкалы

Я использовал небольшую пластиковую бутылочку, в которую налил воду, подкрашенную краской, вставил соломинку от сока, закрепил все при помощи клеевого пистолета.

Наливая раствор, я добился, чтобы небольшая его часть попала в трубочку. Наблюдая за высотой получившегося столбика жидкости можно судить об изменениях температуры.

Во втором случае я заменил пластиковую бутылочку на стеклянную ампулу и собрал термометр по той же схеме. Оба прибора я испытал в различных условиях.


Организация исследования

Опыты с водяными термометрами

Термометр 1 (с пластиковой бутылочкой)

Термометр поместили в горячую воду - столбик жидкости опустился вниз

Термометр поместили в ледяную воду - столбик жидкости поднялся вверх

Термометр 2 (со стеклянной колбой)

Термометр поместили в холодильник.

Столбик жидкости опустился вниз, на обычном термометре отметка 5 градусов

Термометр поместили на отопительную батарею

Столбик жидкости поднялся вверх, на обычном термометре отметка 40 градусов

Вывод: я получил термометр, по которому можно примерно оценить температуру окружающего воздуха. Его точность можно повысить, если использовать стеклянную трубку как можно меньшего диаметра; заполнить колбу жидкостью так, чтобы не оставалось пузырьков воздуха; использовать вместо воды спиртовой раствор.


Научная статья

4. Измерение влажности

Важным параметром окружающего нас мира является влажность, так как организм человека очень активно реагирует на ее изменения. Например, при очень сухом воздухе усиливается потоотделение и человек теряет много жидкости, что может привести к обезвоживанию.

Известно также, что того, чтобы избежать болезней органов дыхания, влажность воздуха в помещении должен быть не менее 50-60 процентов.

Величина влажности важна не только для человека и других живых организмов, но и для протекания технических процессов. Например, избыток влажности может влиять на корректную работу большинства электроприборов.

Для измерения влажности используются специальные приборы- психрометры, гигрометры, зонды и различные устройства.


Организация исследования

Психрометр

Один из способов определения влажности основан на разнице показаний «сухого» и «влажного» термометров. Первый показывает температуру окружающего воздуха, а второй – температуру влажной ткани, которой он обернут. Используя эти показания по специальным психрометрическим таблицам, можно определить значение влажности.

В пластиковой бутылке из-под шампуня я сделал небольшое отверстие, в которое вставил шнурок, на дно налил воды.

Один конец шнурка закрепил на колбе правого термометра, другой поместил в бутылку, чтобы он находился в воде.


Организация исследования

Опыты с психрометром

Свой психрометр я проверил, определяя влажность в различных условиях

Вблизи отопительной батареи

Вблизи работающего увлажнителя воздуха

Сухой термометр 23 º С

Влажный термометр 20 º С

Влажность 76 %

Сухой термометр 25 º С

Влажный термометр 19 º С

Влажность 50 %

Вывод: я выяснил, что психрометр, собранный в домашних условиях можно использовать для оценки влажности помещений


Заключение

Наука измерений очень интересна и разнообразна, история ее начинается в глубокой древности. Существует огромное количество различных методов и приборов измерений.

Моя гипотеза подтвердилась - в домашних условиях можно смоделировать простые приборы (коромысловые весы, водяные часы, термометр, психрометр), которые позволяют определять вес, температуру, влажность и заданные промежутки времени.


Самодельные приборы можно использовать в обычной жизни, если под рукой не оказалось стандартных измерительных приборов:

Засекать время, выполняя упражнения на пресс, отжимания или прыжки на скакалке

Следить за временем при чистке зубов

На уроках – проводить пятиминутные самостоятельные работы


Список литературы.

1. «Познакомься, это… изобретения»; Энциклопедия для детей; изд-во «Махаон», Москва, 2013

2. «Зачем и почему. Время»; Энциклопедия; изд-во «Мир книги», Москва 2010

3. «Зачем и почему. Изобретения»; Энциклопедия; изд-во «Мир книги», Москва 2010

4. «Зачем и почему. Механика; Энциклопедия; изд-во «Мир книги», Москва 2010

5. «Большая книга знаний» Энциклопедия для детей; изд-во «Махаон», Москва, 2013

6. Интернет –сайт «Занимательная-физика.рф» http://afizika.ru/

7. Интернет-сайт «Часы и часовое дело» http://inhoras.com/


Авометром, схема которого показана па рис. 21, можно измерять: постоянные токи от 10 до 600 ма; постоянные напряжения от 15 до 600 в; переменные напряжения от 15 до 600 в; сопротивления от 10 ом до 2 Мом; напряжения высоких частот 100 кгц—100 Мгц в пределах от 0,1 до 40 в. коэффициент усиления транзисторов по току В до 200.

Для измерения напряжений высокой частоты используется выносной пробник (ВЧ головка).

Внешний вид авометра и ВЧ головки показан на рис. 22.

Прибор монтируют в корпусе из алюминия или в пластмассовой коробочке размерами примерно 200X115X50 мм. Лицевая панель из листового текстолита или гетинакса толщиной 2 мм. Корпус и переднюю панель можно также сделать из фанеры толщиной 3 мм, пропитанной бакелитовым лаком.

Рис. 21. Схема авометра.

Детали. Микроамперметр типа М-84 на ток 100 мка с внутренним сопротивлением 1 500 ом. Переменный резистор типа ТК с выключателем Вк1. Выключатель надо снять с корпуса резистора, повернуть на 180° и поставить на прежнее место. Такое изменение делают для того, чтобы контакты включателя замыкались, когда резистор полностью выведен. Если этого не сделать, то универсальный шунт будет всегда подключен к прибору, уменьшая его чувствительность.

Все постоянные резисторы, кроме R4—R7, должны быть с допуском номиналов сопротивлений не более ±5%. Резисторы R4—R7 шунтирующие прибор при измерении токов, — проволочные.

Выносной пробник для измерения напряжений высокой частоты размещают в алюминиевом корпусе от электролитического конденсатора Его детали монтируют на пластинке из оргстекла. На ней же крепят два контакта от штепсельной вилки, которые являются входом пробника. Проводники входной цепи надо располагать возможно дальше от проводников выходной цепи пробника.

Полярность диода пробника должна быть только такой, как на схеме. Иначе стрелка прибора будет отклоняться в обратную сторону. То же касается и диодов авометра.

Универсальный шунт изготовляют из проволоки с большим удельным сопротивлением и монтируют непосредственно на гнездах. Для R5—R7 подойдет константановая проволока диаметром 0,3 мм, а для R4 можно использовать резистор типа ВС-1 сопротивлением 1400 ом, намотав на его корпус константановую проволоку диаметром 0,01 мм, чтобы их общее сопротивление было 1 468 ом.

Рис 22. Внешний вид авометра.

Градуировка. Шкала авометра показана на рис. 23. Градуировку шкалы вольтметра производят по эталонному контрольному вольтметру постоянного напряжения по схеме, показанной на рис. 24, а. Источником постоянного напряжения (не менее 20 в) может быть низковольтный выпрямитель или батарея, составленная из четырех КБС-Л-0,50. Поворачивая движок переменного резистора, наносят на шкалу самодельного прибора отметки 5, 10 и 15 б, а между ними — по четыре деления. По этой же шкале измеряют и напряжения до 150 в, умножая показания прибора на 10, и напряжения до 600 в, умножая на 40 показания прибора.
Шкала измерений тока до 15 ма должна точно соответствовать шкале вольтметра постоянных напряжений, что проверяют по эталонному миллиамперметру (рис. 24,6). Если показания авометра отличаются от показаний контрольного прибора, то изменяя длину провода на резисторах R5—R7, подгоняют сопротивления универсального шунта.

Точно так же градуируют шкалу вольтметра переменных напряжений.

Для градуировки шкалы омметра надо использовать магазин сопротивлений или использовать в качестве эталонных постоянные резисторы с допуском ±5%. Прежде чем начать градуировку, резистором R11 авометра устанавливают стрелку прибора в крайнее правое положение — против цифры 15 шкалы постоянных токов и напряжений. Это будет «0» омметра.

Диапазон сопротивлений, измеряемых авометром, большой — от 10 ом до 2 Мом, шкала получается плотной, поэтому на шкалу наносят только цифры сопротивлений 1 ком, 5 ком, 100 ком, 500 ком и 2 Мом.

Авометром можно измерять статический коэффициент усиления транзисторов по току Вст до 200. Шкала этих измерений равномерная, поэтому Делят ее на равные промежутки заранее и проверяют по транзисторам с известными значениями Вст Если показания прибора несколько отличаются от фактических значений, то изменяют сопротивление резистора R14 до действительных значений этих параметров транзисторов.

Рис. 23. Шкала авометра.

Рис. 24. Схемы градуировки шкал вольтметра и миллиамперметра авометра.

Для проверки выносного пробника при измерении высокочастотного напряжения нужны вольтметры ВКС-7Б и любой высокочастотный генератор, параллельно которому подключают пробник. Провода от пробника включают в гнездо «Общий» и «+15 в» авометра. Высокую частоту подают на вход лампового вольтметра через переменный резистор, как при градуировке шкалы постоянных напряжений. Показания лампового волтьметра должны соответствовать шкале постоянного напряжения на 15 в авометра.

Если показания при проверке прибора по ламповому вольтметру не совпадают, то несколько изменяют сопротивление резистора R13 пробника.

С помощью пробника измеряют напряжения высокой частоты только до 50 в. При большем напряжении может произойти пробой диода. При измерении напряжений частот выше 100—140 Мгц прибор вносит значительные погрешности измерений ввиду шунтирующего действия диода.

Все градуировочные отметки на шкале омметра делают мягким карандашом и только после проверки точности измерений обводят их тушью.

В.В. Вознюк. В помощь школьному радиокружку

Ключевые теги: измерения, Вознюк

БМК-Миха , самый главный недостаток этого прибора это низкое разрешение - 0,1Ом которое невозможно повысить чисто программным путём. Если бы не этот недостаток, прибор был бы идеальным!
Диапазоны оригинальной схемы: ESR=0-100Ом, C=0pF-5000µF.
Хочу обратить особое внимание на то что прибор до сих пор находится в процессе доработки как программной так и аппаратной, однако продолжает активно эксплуатироваться.
Мои доработки относительно :
Аппаратные
0. Убрал R4,R5. Сопротивление резисторов R2,R3 уменьшил до 1,13К, и подобрал пару с точностью до одного ома (0,1%). Таким образом увеличил тестовый ток с 1мА до 2мА, при этом уменьшилась нелинейность источника тока (за счёт удаления R4,R5), повысилось падение напряжение на конденсаторе что способствует увеличению точности измерения ESR.
Ну и конечно подкорректировал Кусил. U5b.
1. Ввёл фильтры питания на входе и выходе преобразователя +5V/-5V (на фото платка стоящая вертикально и есть преобразователь с фильтрами)
2. поставил разъём ICSP
3. ввёл кнопку переключения режимов R/C (в "оригинале" режимы переключались аналоговым сигналом поступающим на RA2 , происхождение которого в статье описывается крайне туманно...)
4. Ввёл кнопку принудительной калибровки
5. Ввёл зуммер подтверждающий нажатие кнопок и подающий сигнал включённости каждые 2 минуты.
6. Умощнил инверторы их параллельным попарным включением (при тестовом токе в 1-2мА не обязательно, просто мечтал повысить ток измерения до 10мА, что до сих пор не удалось)
7. Последовательно с Р2 поставил резистор 51ом (во избежании КЗ).
8.Выв. регулировки контрастности зашунтировал конденсатором 100нф(напаял на индикатор). Без него при касании отвёрткой движка Р7 индикатор начинал потреблять 300мА! Чуть LM2930 не спалил вместе с индикатором!
9.на питание каждой МС поставил блокировочный конденсатор.
10. скорректировал печатную плату.
Программные
1. убрал режим DC (скорее всего верну его обратно)
2. Ввёл табличную коррекцию нелинейности (при R>10Ом).
3. ограничил диапазон ESR до 50Ом (с оригинальной прошивкой прибор "зашкаливал" при 75,6 Ом )
4. дописал подпрограмму калибровки
5. написал поддержку кнопок и зуммера
6. ввёл индикацию заряда батареи - цифры от 0 до 5 в последнем разряде дисплея.

В блок измерения ёмкости не вмешивался ни программно ни аппаратно, за исключением добавления резистора последовательно с Р2.
Принципиальную схему отражающую все доработки пока не начертил.
прибор был очень чувствителен к влажности! как дыхнёшь на него так показания начинают "плыть" .Всему виной большое сопротивление R19, R18,R25,R22. Кстати может мне кто нибудь объяснить, нах*ена каскаду на U5a такое большое входное сопротивление???
Короче говоря, аналоговую часть залил лаком - после чего чувствительность полностью пропала.

Журнал ELEKTOR насколько я знаю, немецкий, авторы статей немцы и печатают его в Германии, по крайней мере немецкую версию.
m.ix , давайте шутить во флейме

В нашей жизни используется множество измерительных приборов, которые позволяют контролировать микроклимат помещений. Один из них – гигрометр, устройство, которое можно изготовить в домашних условиях.

Зачем нужен гигрометр?

Гигрометр позволяет выявить относительную влажность окружающей среды, которая является одним из важнейших составляющих микроклимата помещения. Содержание влаги в воздухе влияет на самочувствие людей. Этот показатель обязательно должен находиться в пределах среднего диапазона. Пониженная влажность воздуха может приводить к затрудненному дыханию и пересыханию слизистых оболочек, а повышенная – к ухудшению физического состояния. Особенно строго следить за этим значением нужно людям, имеющим заболевания дыхательных путей.

Для контроля влажности в помещении можно приобрести специальную метеостанцию. Однако из подручных средств также можно собрать прибор, который сможет заменить собой гигрометр.

Аналог психрометрического прибора

Чтобы получать точные сведения, нужно знать, как сделать гигрометр в домашних условиях. Для создания аналога психрометрического устройства понадобятся:

  • два ртутных термометра, предназначенных для измерения температуры воздуха;
  • дистиллированная вода;
  • доска;
  • нить;
  • хлопчатобумажная ткань.

Также понадобятся любые подручные средства, с помощью которых можно произвести закрепление термометра.

На доске нужно установить в вертикальном положении два термометра так, чтобы они находились параллельно по отношению друг к другу. Под одним из измерительных приборов необходимо установить небольшую емкость с дистиллированной водой. В качестве емкости можно использовать небольшую колбу или обыкновенный пузырек. Наконечник термометра (ртутный шарик), под которым установлен «резервуар», следует обернуть обыкновенной хлопчатобумажной тканью, после чего не очень туго перевязать нитью. Края ткани приблизительно на 5 миллиметров опускаем в емкость, которая предварительно была заполнена дистиллированной водой.

Принцип действия такого устройства, собранного своими руками, абсолютно схож с принципом действия психрометрического гигрометра. Для вычисления относительной влажности воздуха понадобится специальная таблица. По разнице показаний «сухого» и «влажного» термометра вычисляют влажность окружающей среды.

«Природный» измеритель

Для изготовления измерителя в домашних условиях можно использовать свойство шишки расправлять или наоборот – сжимать – свои чешуйки в зависимости от изменения влажности окружающей среды. Все, что понадобится для создания устройства – сама шишка и кусок фанеры.

В самый центр фанеры с помощью гвоздя или скотча крепится шишка. Для определения влажности следует проследить за скоростью раскрытия чешуек. Если они быстро раскрываются — влажность воздуха несколько ниже нормы. Если положение чешуек достаточно долго не изменяется – микроклимат помещения соответствует средним показателям. В том случае, если их кончики начнут подниматься вверх, влажность помещения имеет высокие показатели.

Аналог волосяного устройства

Каждый задающийся вопросом «как сделать гигрометр своими руками» очень редко приступает к созданию волосяного устройства. Однако сделать его довольно просто. Для этого потребуются:

  • волос;
  • бензин;
  • клей;
  • гвозди;
  • чертежные принадлежности;
  • бумага высокой плотности;
  • лист фанеры;
  • стержень от ручки;
  • проволока из стали;
  • ролик.

Человеческий волос можно заменить хлопчатобумажной нитью высокого качества, которая также остро реагирует на изменение влажности воздуха.

Волос или нить должны иметь длину не меньше 40 сантиметров. Если речь идет о волосе, его нужно обезжирить (применяется смачивание в бензине). На конец волоса необходимо закрепить груз, имеющий вес, достаточный для того, чтобы расправить его. В качестве такого отвеса может подойти небольшая часть стержня ручки, предварительно промытая от чернил. Для закрепления груза нужно использовать клей. На небольшой гвоздь одевается пластмассовая трубка длиной около пяти миллиметров. В ее качестве также можно использовать стержень авторучки. Важно, чтобы трубка свободно вращалась вокруг гвоздя, не соскакивая с него. Для сборки гигрометра подготовьте горизонтальное основание, на котором будет закреплена вертикальная часть устройства – доска или фанера. В ее центр вбивается заранее подготовленный гвоздь. Разместить его нужно так, чтобы перекинутый через пластиковую трубку волос (одна треть от всей длины) мог быть прикреплен к горизонтальной части своим свободным концом. Крепление производится также с помощью клея. Заключительный этап работы – крепление шкалы, которую можно создать из полосы бумаги, нанеся на нее деления.

Для градуирования прибора занесите его в ванную комнату, в которой был включен горячий душ. Точку, в которой будет находиться острите отвеса, отметьте как 100%. Для нахождения нулевой отметки нужно поставить устройство в нагретую духовку (не очень горячую, чтобы не сжечь устройство). После этого ровно между двух точек нужно поставить отметку в 50 градусов. Можно рассчитать подобным способом десятичные или даже единичные отметки.

Отметка, на которой будет находиться отвес на конце волоса, и будет являться показанием относительной влажности окружающей среды.

Гигрометр из салфетки

Комнатный гигрометр из салфетки сделать достаточно просто. Для его создания необходимо иметь под рукой обыкновенную салфетку, фанеру, гвозди, клей и проволоку. В фанеру вбивается два гвоздя на расстоянии, аналогичном длине салфетки. После этого между ранее закрепленными гвоздями посредством клея крепится сама бумажная салфетка. Два куска проволоки (достаточно длины 2-4 сантиметра) крепятся к салфетке. Одна из частей должна быть частично прикреплена к салфетке, частично – к гвоздю так, чтобы образовывалась своеобразная стрелка.

Принцип действия такого устройства основан на свойстве салфетки впитывать в себя влагу из воздуха. Если вы хотите сделать точную шкалу показаний, можно провести сверку самостоятельно изготовленного прибора по устройству, купленному в магазине. Движение проволоки будет свидетельствовать об изменении микроклимата помещения.

Стоит понимать, что приборы, изготовленные в домашних условиях, не могут похвастаться высокой точностью. Они пригодны лишь для измерения приблизительных показателей. Если вам необходимо знать точную влажность окружающей среды, необходимо приобрести любой из видов комнатных гигрометров.




Top