Работает передатчик приемник. Что такое радиостанция (рация)? Почему лучше начинать с простых схем

Шесть часов утра по московскому времени. В пространство несутся мерные удары кремлевских курантов, и затем раздаются торжественные звуки гимна. Едва отзвучали его последние ноты, как раздается спокойный, четкий голос диктора: «Говорит Москва».

Так начинается день центрального радиовещания. Знаете ли Вы, как происходят эти передачи?

Каким образом каждый звук, возникший в радиостудии, на театральной сцене или в другом месте, откуда ведут радиопередачу, мгновенно доносится к вам за сотни и тысячи километров? Для того чтобы мы могли услышать радиопрограмму, нужно ее, во-первых, передать, а затем принять.

Рис. 1. Звуковые волны вокруг камертона.

Рис. 2. Работа микрофона. а—звука нет, в цепи микрофона течет.постоянный ток; б— под действием звука мембрана вогнута, сопротивление уменьшилось, ток возрос: в —под действием звука мембрана выгнута, сопротивлению увеличилось, ток уменьшился.

Задача передающей радиостанции состоит в том, чтобы превратить речь, пение музыку в электрический ток, а затем преобразовать последний в электромагнитные волны и излучать их в окружающее пространство.

Как же практически решается эта задача? Чтобы выяснить это, вспомним, что такое звук. Звук — это колебания какой-либо среды: воздуха, дерева, металла, воды и т. п. Звуковые колебания в неограниченном пространстве распространяются от источника звука по радиусам во всех направлениях. Средняя скорость распространения звука в воздухе 330 м/сек.

На рис. 1 условно показаны (на самом деле невидимые глазу) периодические «сгущения» и «разрежения» в звукопроводящей среде, которые и представляют собой звуковые колебания или звуковую волну.

Наше ухо способно воспринимать как звук только колебания определенных частот (от 16 до 20 000 колебаний в секунду). Кроме того, амплитуда этих колебаний должна быть достаточно большой, т. е. звук должен обладать определенной силой, иначе мы не сможем его услышать.

Микрофон

И электромагнитные волны и звук — это колебания, но разной природы. Нет ли способа превратить звуковые колебания в электромагнитные? Есть. Для этого сначала нужно звук превратить в колебания электрического.тока.

Прибор, преобразующий звуковые колебания в электрические, называется микрофоном. Опишем принцип действия простейшего микрофона.

На рис. 2 показана металлическая камера, в которую насыпан угольный порошок. С одной стороны эту камеру закрывает гибкая пластинка, укрепленная на изоляторах; со всех остальных сторон камера закрыта наглухо. Камера и пластинка присоединены к источнику постоянного напряжения, создающего в цепи постоянный ток. Но представьте себе, что мы начали говорить, приблизившись к пластинке. Если пластинка достаточно тонка, то под действием звуковых волн, т. е. сгущений и разрежений воздуха, она начинает колебаться. При колебаниях пластинки будет изменяться сила ее давления на угольный порошок, отчего будет меняться сопротивление, оказываемое этим порошком электрическому току. Величина тока начнет меняться. В результате в цепи будет течь пульсирующий ток. Применив довольно простые электротехнические устройства, легко разделить пульсирующий ток на переменный и постоянный.

Мы сумели превратить звуковые колебания в переменный электрический ток. Но дело в том, что электрические колебания, созданные микрофоном, очень слабы; их следует усилить с помощью радиоламп, применяемых в специальных аппаратах — усилителях низкой частоты, а после этого можно передать их по проводам на радиостанцию.

Чтобы понять, как работает радиостанция, придется вернуться к колебательному контуру.

Снова о колебательном контуре. Вспомним наши рассуждения. Излучая радиоволны, антенна непрерывно посылает в пространство электромагнитную энергию высокой частоты, порцию за порцией. Эту энергию антенна поручает из колебательного контура.

Откуда же беспрерывно черпает энергию сам колебательный контур? Очевидно, нужно осуществить устройство, передающее контуру все новые и новые количества энергии взамен тех, которые он с пользой передает антенне, и тех, которые бесполезно затрачивает в самом себе. Нельзя предполагать, что колебательный контур работает как какой-то «вечный» маятник.

Вот о работе устройств, обеспечивающих создание радиоволн, мы теперь и должны сказать.

Радиотехника знает много всяких способов «подбрасывания» энергии в колебательный контур. Все они, за исключением одного, были отвергнуты практикой. Дело в том, что подбрасывание новых порций электрической энергии в контур нужно производить в такт с колебаниями. Не вовремя подброшенная порция электрической энергии не только не поддержит колебания, но будет заглушать их.

Наиболее пригодный способ, посредством которого производится передача в контур новых и новых количеств электрической энергии, применяется уже около 40 лет. Мы имеем в виду использование электронной лампы, которая является душой современной радиотехники.

Для ознакомления с тем, как электронная лампа вместе с колебательным контуром создает токи высокой частоты, в качестве главного «действующего лица» мы возьмем трехэлектродную лампу. Для простоты объяснения принципа работы радиопередатчика мы воспользуемся этой старой заслуженной ветеранкой, а не современными более сложными генераторными лампами.

Поучительный эпизод. Известен интересный эпизод из истории развития паровой машины. Один мальчик был приставлен к примитивной старинной паровой машине. Обязанности мальчика были несложные, но весьма однообразные. В строго определенные моменты времени он должен был открывать и закрывать кран. Важно было не спутаться и н-е открыть кран раньше времени, чтобы не остановить машину. Мальчику; наделенному природной сообразительностью, надоело утомительное занятие. Желая выкроить хотя бы немного свободного времени для своих игр, он пустился на хитрость. Веревками соединил он кран с качающимся коромыслом машины, предоставив самой машине заботиться об открывании и закрывании крана в нужные моменты. Машина была переведена с ручного обслуживания на автоматическое. Краны открывались и закрывались без прикосновения рук.

Этот эпизод напоминает то, что двумя столетиями позже произошло с изобретением лампового генератора токов высокой частоты. В 1913 г. была разработана первая схема лампового генератора, положившая начало ряду других схем, обеспечивающих удобные способы получения токов высокой частоты.

В это время знали, что радиолампа может усиливать слабые переменные электрические токи практически любой частоты. Знали и то, что если усиления одной лампы недостаточно, можно последовательными ступенями включить несколько электронных ламп одну вслед за другой. Несомненно, и до этого времени считали возможным усиленные таким образом мощные колебания высокой частоты подать прямо в антенну. В дверь стучалась идея создания ламповой передающей радиостанции. Не хватало одного: умения решить задачу — откуда взять первоначальный переменный ток, который следует подвести к сетке первой усилительной лампы.

И ученым пришла идея, с внешней стороны имевшая много общего с детской хитростью мальчика, обслуживавшего паровую машину. Они решили перевести электронную лампу на самообслуживание. Пусть она не ждет, когда ей соберутся подать к сетке переменное напряжение, а сама заботится об этом.

Рис. 3. Схема генератора с трансформаторной связью.

Иными словами, лампу заставили заниматься не только усилением уже ранее где-то и чем-то созданных переменных токов, но и самой возбуждать, генерировать их..

Таким образом, был создан первый ламповый генератор незатухающих колебаний. Первый ламповый генератор. Схема этого генератора исключитель но проста (рис. 3). В анодной цепи электронной лампы (триода) Л включен колебательный контур LC, а в цепи сетки лампы — катушка L c , близко расположенная в контурной катушке L. Вот и весь генератор.

Чтобы понять, как работает ламповый генератор, сделаем небольшое допущение. Оно нужно только на короткое время, и мы от него вскоре откажемся. Представим дебе, что в колебательном контуре LC уже поддерживаются незатухающие колебания. Ток в катушке L непрерывно меняет свое направление, и с такой же частотой заряжается и разряжается конденсатор С. Следуя за изменениями тока в контуре, меняются величина и направление магнитного поля вокруг катушки L То возникая, то исчезая, оно воздействует на витки катушки L с (пересекает их) и,как это получается в любом трансформаторе, по индукции наводит в них напряжение.

Но к катушке L c присоединена сетка лампы; следовательно, с такой же частотой, с какой колеблется ток в контуре, будет меняться и напряжение на сетке. Сетка действует автоматически, она не ошибается: «плюс» на сетке увеличивает анодный ток, протекающий через лампу, а «минус»— уменьшает его.

Качели можно раскачивать, подталкивая их в такт. Эту обязанность в лампе с большим прилежанием выполняет сетка, получающая то положительные, то отрицательные заряды. Она не дает покоя анодному току, заставляя его совершать непрерывные колебания.

Так и, не удается анодному току течь спокойно. Все время, пока нить (катод) лампы накалена, а на аноде лампы имеется положи-, тельное напряжение, ламповый генератор создает незатухающие колебания. Лампа за счет энергии анодной батареи Б покрывает все потери в контуре. Получается своего рода «идеальный» колебательный контур. Решена задача, получения незатухающих колебаний.

Ламповый генератор может быть уподоблен заведенным пружинным часам или стенным часам с поднятыми гирями. Упругость пружины или вес гирь полностью компенсирует все тормозящие силы трения и заставляет часовой механизм работать безостановочно.

Теперь мы уже можем отбросить наше допущение. Пусть в анодном контуре нет затухающих колебаний: Но первый же толчок тока, вызванный включением генератора, импульсом создаст магнитное поле вокруг контурной катушки. Этот импульс будет передан сетке, и та незамедлительно сделает свое дело. Качели придут в движение. Раскачиваясь все более, они достигнут максимальных размахов, при которых раскачивающих усилий как раз хватит на преодоление всех сил, стремящихся остановить колебания.

Удалось точно построить генератор, который работает сам, без ручного или механического управления. Он сам себя принуждает к действию, самовозбуждается. Поэтому такой генератор называется самовозбуждающимся.

Обратная связь. Разнесите контурную и сеточную катушки на большое расстояние, чтобы магнитное поле контурной катушки не «зацепляло» за витки сеточной катушки, и все кончится. Колебания создаются только потоку что анодная цепь связана с сеточной и передает‘ей возбуждающие импульсы. Такая связь называется обратной связью: вместо того, чтобы колебания из анодной цепи поступали куда-либо дальше, «на выход», они (не полностью, а частично) передаются обратно, на сетку своей Же собственной лампы. Сеточная катушка, посредством которой сетка связывается с цепью анода, называется катушкой обратной связи. Чем больше витков в ней и чем ближе она расположена к контурной катушке, тем большее напряжение индуктируется в ней, тем сильнее связь.

Итак, не электронная лампа создает колебания — они создаются в колебательном контуре. Но никогда бы контур не создал незатухающих колебаний, если бы лампа не подбрасывала в контур все новые и новые количества электрической энергии для компенсации всех потерь — полезных и вредных. Но и лампа не могла бы ничего передать контуру, если бы не получала энергию от источников питания— батарей или электрогенераторов, подающих напряжение на анод.

Темп колебаний или, лучше сказать, частоту навязывает колебательный контур. Колебания медленные, и электронная лампа будет в таком же медленном темпе передавать контуру очередные порции электрической энергии. Но ей никакого труда не составит производить это со скоростью нескольких миллионов или десятков и сотен миллионов раз в секунду. Попробуйте-ка вручную управлять электрической энергией с такой скоростью!

Трехточка

Мы уже указывали, что сетке лампы совершенно безразлично, откуда ей подается «раскачка». В схеме на рис. 3 обратная связь анодного контура с сеткой — трансформаторная. Вскоре было доказано, что иметь отдельную катушку обратной связи совершенно не обязательно. Для этого применили схему, у которой сетка (рис. 4) непосредственно присоединена к контурной катушке L. На сетку лампы Л подается напряжение, возникающее на части А—Б витков контурной катушки. Чем больше витков между точками А и Б, тем большее напряжение подается на сетку, тем сильнее обратная связь. Наоборот, передвигая соединительный проводник сетки к точке Б, мы уменьшали бы обратную связь. Такая связь называется автотрансформаторной. В принципе она ничем не отличается от трансформаторной. Оба способа представляют разновидности индуктивной связи: напряжение на сетке создается благодаря электромагнитной индукции.

Непременным условием действия схемы является такое соединение трех проводников от лампы Л к контуру LC, при котором провод от катода (нити) присоединяется между проводами от анода и сетки. Только тогда сеточные и анодные импульсы будут действовать в такт. Если анодный ток, например, должен увеличиваться, то для этого должно возрастать положительное напряжение на сетке.

Подачу порций энергии от лампы в контур строго в такт радиоспециалисты называют подачей в фазе. Схема с трансформаторной связью может не возбудиться, если импульсы на сетке не в фазе с импульсами анодного тока. В этой схеме правильная фазировка достигается очень просто: если генератор не возбуждается, достаточно переключить концы сеточной катушки. В схеме с автотрансформаторной связью нужно расположить проводники только так, как показано на рис. 4.

Весьма простая по своему устройству, состоящая всего лишь из колебательного контура, в трех точках соединенного с лампой, эта схема пользовалась в свое время особым расположением радиолюбителей. Почти все радиопередатчики первых коротковолновиков имели генератор «трехточку».

Задающий генератор

Ламповому самовозбуждающемуся генератору не хватает еще антенны, чтобы стать радиопередатчиком. Различие между мощными и маломощными радиостанциями заключается главным образом в степени усиления первоначально полученных в ламповом генераторе высокочастотных колебаний.

Рис. 4. Схема генератора с автотрансформаторной связью.

Если требуется мощность больше той, которую в состоянии отдать непосредственно самовозбуждающийся генератор, то применяют ступенчатое усиление все более мощными лампами. Иногда в одном усилительном мощном каскаде для увеличения мощности одновременно включают «в общую упряжку» несколько ламп — две, три и больше. Нередко можно встретить передатчик с тремя-четырьмя и даже семью-восемью каскадами. В таких условиях самовозбуждающийся ламповый генератор, первоисточник электрических колебаний, получает название задающего генератора: он «задает тон» всем остальным — усилительным каскадам, «раскачивает» их.

Задающий генератор —«сердце» передатчика. Остановится «сердце»—и все остановится. Первый усилительный каскад ничего не получит на сетку лампы от задающего каскада и поэтому ничего не передаст второму каскаду, второму нечего будет передавать третьему и т. д. Тщетно антенна будет ожидать получения токов высокой частоты от мощного оконечного каскада.

И «сердце» передатчика тщательно оберегают. Ему вредна перегрузка. На него действуют тепло, выделяемое током в различных деталях установки. Всякое изменение температуры приводит к изменению размеров металлических конструкций, в частности к изменению размеров деталей конденсатора и катушки контура. Меняется индуктивность — меняется емкость, а от этого меняется генерируемая частота, «гуляет» волна радиостанции. В поисках сигналов станции приходится все время перестраивать приемник.

Чтобы избежать неприятностей, от задающего генератора не требуют большой мощности— лишь бы он генерировал колебания строго определенной частоты. Как нежное растение помещают в оранжерею, так и задающий генератор часто помещают в камеру со строго постоянной температурой. Чаще же применяют особые стабилизаторы частоты, которые не позволяют генерируемой частоте отклоняться от заранее установленного значения, от номинала частоты.

Связующим звеном между ламповым генратором и антенной является питающая линия (фидер). Она играет роль плюса в несложном арифметическом выражении:

радиопередатчик = ламповый генератор + антенна .

Питающая линия состоит из проводов или кабеля, соединяющих антенну с ламповым генератором. Таким образом, мы познакомились с общим принципом действия радиопередатчика.

Включаем радиопередатчик. Через радиопередатчики может быть осуществлен любой вид работы: передача радиограмм с помощью телеграфной азбуки (радиотелеграфная передача), передача речи и музыки (радиотелефонная передача), буквопечатание и передача изображений.

Самый простой вид работы — прерывание колебаний; так поступают радисты, выстукивая ключом знаки телеграфной азбуки: при нажатии -ключа замыкаются его контакты и серия высокочастотных колебаний поступает в антенну, при размыкании контактов подача колебаний в антенну прерывается. Короткое время включения соответствует точке, длинное— тире. Этот процесс называется манипуляцией (рис. 5).

Но таким способом можно передавать лишь условные знаки телеграфной азбуки. А если нужно передать речь или музыку, то прежде всего следует обратиться к помощи микрофона.

О первом этапе превращения звука в электрический ток мы уже знаем. Этот ток мы усилили и направили по проводам на радиостанцию. К передатчику, таким образом, звуки пришли в виде электрических колебаний низкой частоты. Что же теперь с ними делать?

Модуляция. Используемые для вещания на больших расстояниях радиоволны имеют длину от 15 до 2000 м, а это значит, что частота, с которой колеблется вызывающий их электрический ток, равна 20 000 000 (20 Мгц) — 150 000 (150 кгц) колебаний в секунду. Самая же высокая звуковая (низкая) частота, которую способно воспринимать наше ухо, имеет примерно 20 000 колебаний в секунду.

Таким образом, получается, что колебания, которые мы можем услышать, имеют весьма низкую частоту и поэтому неспособны излучаться в пространство.

Рис. 5, Ток высокой частоты в антенне передатчика при телеграфной работе.

Рис. 6. Графическое изображение результата модуляции.

Колебания же, излучающиеся на огромные расстояния в виде электромагнитных волн, имеют очень высокую частоту. Такие колебания мы не можем слышать.

Остается, видимо, как-то приспособить высокочастотные колебания для «транспортировки» колебаний, звуковой частоты. Такой способ был найден. Колебания звуковой частоты заставляют воздействовать на колебания высокой частоты. Процесс воздействия низкочастотных колебаний на высокочастотные называется модуляцией.

Электрические колебания звуковой частоты трудно передать далеко, а с помощью высокой частоты они свободно перебрасываются вокруг всего земного шара.

Термин «модуляция» издавна применяется в музыке для обозначения перехода из одной тональности в другую — смены ладов.

В электротехнике модуляция — это изменение какой-нибудь из характеристик электрического тока — его величины, частоты, фазы— в соответствии с колебаниями какого-либо другого тока.

Модуляция — это не просто смешение токов, а такое воздействие низкочастотного тока на высокочастотный, когда низкочастотный ток как бы отпечатывает свою форму на высокочастотном.

Ток высокой частоты, на который воздействует телефонный разговор, называется модулируемым током, модулируемым колебанием. Говорят также:гнесущее колебание. Это удачное название. Оно хорошо показывает сущность процесса. Высокочастотное колебание после модуляции несет на себе (или в себе) отпечаток тока низкой частоты.

Процесс модуляции осуществляется с помощью специального устройства, называемого модулятором. Модулятор осуществляет воздействие токов низких частот на высокочастотные колебания. Делается это в радиопередатчиках посредством специальных модуляторных ламп.

Высокочастотные колебания до модуляции ничем не отличаются одно от другого. Но вследствие действия электрических колебаний, поступающих с микрофона, амплитуда их меняется. Она становится то больше, то меньше. Эти изменения в точности соответствуют колебаниям микрофонного тока, а следовательно, и звуковым колебаниям. Так, на электрические колебания высокой частоты накладывается «отпечаток» (узор) передаваемых звуков, и в результате получаются модулированные колебания, которые излучаются радиостанцией (рис. 6).

Назначение радиопередающих станций очень разнообразно. Некоторые из них ведут передачи для всей страны и располагаются в больших помещениях. Любительская радиостанция часто свободно размещается на столе в квартире коротковолновика. Но как бы ни различались они по своему виду и размерам, принципиальной разницы в их работе нет. Радиотехнические процессы в них почти одинаковы и различаются они в основном только мощностью колебаний и длиной излучаемых радиоволн.

Каждая радиостанция — это фабрика радиоволн. Она потребляет электрическую энергию от батарей или от генератора, или от электрической сети и преобразует ее в высокочастотные электрические колебания, которые после усиления и модуляции попадают в передающую антенну. Отсюда они уже в виде радиоволн начинают свое путешествие к радиоприемникам.

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

4. Принцип работы передатчика

Сигнал с датчиков или любых других источников аналоговой информации поступает на быстродействующие аналоговые ключи. Работой, которых управляет схема временного разделения каналов, состоящая из дешифратора 1, счётчика 1 и генератора импульсов 1.Схема работает следующим образом:

Генератор импульсов 1 выдаёт короткие импульсы расстояния, между которыми равны времени преобразования А.Ц.П. Эти импульсы подсчитываются трёхразрядным асинхронным счётчиком импульсов граф которого имеет такой вид

Такой счётчик легко реализовать на трёх синхронных D-триггерах. Трёх разрядный двоичный код со счётчика 1 поступает на дешифратор 1, который в зависимости от кода подключает соответствующие каналы.

Таким образом, на вход А.Ц.П. поступают последовательно аналоговые сигналы с соответствующих аналоговых входов. А.Ц.П. синхронизируется побитовым генератором. Это генератор коротких импульсов, расстояние между которыми равно длительности элементарного символа в коде. А.Ц.П., как правило, содержит на выходе параллельный регистр, у которого выходы находятся в так называемом третьем состоянии (высокий импенданс) . Чтобы обеспечить вывод данных нужен сигнал разрешения он поступает от генератора импульсов 1. После вывода параллельного кода выводы этого регистра автоматически переходят обратно в третье состояние.

С А.Ц.П. выходит 9 разрядный параллельный код командного слова, который поступает на преобразователь кода из параллельного в последовательный. Такой преобразователь может быть выполнен на параллельно-последовательном регистре, который синхронизируется также от побитового генератора.

В качестве синхрослова используется 63 разрядная М-последовательность. Синхрослово должно быть в начале кадра. Схема формирования синхрослова может быть выполнена на основе формирователя М-последовательности и на основе П.З.У. Первый вариант схемы (рис.1) работает таким образом:

Имеется формирователь М-последовательности (Ф.М.П.), который легко реализуется с помощью линейных переключательных схем на основе сдвигающих регистров. Принцип формирования в данном проекте рассматривать не будем, он очень подробно рассмотрен в литературе . В качестве синхросигнала для Ф.М.П. используется побитовый генератор импульсов. Генерация последовательности начинается, когда приходит сигнал высокого уровня со схемы сравнения (сигнал пуск). Такой сигнал возможен только в том случае если подключен первый канал и начат вывод из А.Ц.П. первого кодового слова. Для формирования 63 разрядной М-последовательности необходимо 64 импульса. Схема подсчёта этих импульсов выполнена на счётчике 2 и дешифраторе 2. Как только счётчик насчитывает 64 импульса на соответствующем выходе дешифратора появляется сигнал высокого уровня (сигнал останов.), который останавливает Ф.М.П. Так как счётчик 2 будет постоянно считать импульсы с побитового генератора импульсов, то в момент начала формирования М-последовательности его надо вернуть в исходное состояние (сбросить). Для этого сигнал пуск со схемы сравнения подаётся на ключ, который подключает сигнал высокого уровня на небольшое время к входу сброса счётчика. Сигнал останов. также переводит регистр-преобразователь кода из третьего состояния в рабочее и с его выхода начинает выходить М-последовательность в последовательном двоичном коде. Как только все 63 разряда синхрослова выйдут из регистра, он автоматически переходит в третье состояние.

Второй вариант схемы (рис.2) формирования М-последовательности основан на использовании П.З.У. Принцип работы такой:

Аналогично схеме с генератором М-последовательности имеется сигнал пуск. Он поступает на П.З.У. и переводит его в режим считывания. В П.З.У. заранее запрограммирована нужная 63 разрядная М-последовательность. Также на П.З.У. поступает сигнал синхронизации от битового генератора, как и в предыдущей схеме. Синхрослово выходит в параллельном коде из П.З.У. и поступает на преобразователь кода в виде регистра. После вывода П.З.У. выходит из режима считывания и ждёт сигнал пуск. Сигнал пуск также переводит преобразователь кода в рабочее состояние, и начинается вывод синхрослова в последовательном коде под действием сигнала синхронизации, поступающего от битового генератора. Эта схема наиболее простая так как требуется меньше сигналов управления по сравнению со схемой на формирователе. Также малогабаритнее, дешевле и надёжнее так как используется меньше радиоэлементов и микросхемы П.З.У. такой малой емкости очень дёшевы. В работе я рассмотрел простейший вариант схемы. Вообще, как правило, такие схемы формирования делаются на микропроцессорном комплекте или микроконтроллерах, тогда всё управление можно осуществлять программным путём через порты ввода-вывода.

Синхрослово поступает на сумматор, где суммируется с кодовыми словами. Чтобы не было наложения синхрослова на кодовые слова необходимо задержать кодовые слова на время равное длительности синхрослова. Это делается с помощью цифровой линии задержки или блока памяти.

В результате образуется кадр, состоящий из синхрослова и 7кодовых слов, разделённых по времени. Далее,сигнал поступает на в.ч. каскад (рис.3) где он поступает на фазовый манипулятор, с помощью которого манипулируется поднесущая. Сформированным фазоманипулированным сигналом на поднесущей осуществляется фазовая модуляция несущего колебания.

На в.ч. каскад


На в.ч. каскад






С обратной связью наиболее характерно для управления бортовой аппаратурой космических аппаратов. 4. Разработка функциональной схемы радиолинии 4.1 Спектр сигнала КИМ-ЧМ-ФМ Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной...




... : 2.4 Расчет энергетического потенциала Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. В задании курсового проектирования задана линия с расстоянием между приемником и передатчиком 200 км. Зададимся, что это линия Земля - управляемый объект. Линия связи подобного типа предназначена для...

Применяется посимвольный прием. Рисунок 1. Функциональная схема радиолинии КИМ-ФМ Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а...

Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал. Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Цифровая радиолиния с...

В любом радиовещательном приемнике, независимо от его сложности, совершенно обязательно есть три элемента, обеспечивающие ему работоспособность. Эти элементы колебательный контур, детектор и телефоны или, если приемник с усилителем 34, динамическая головка прямого излучения. Твой первый приемник, собранный и испытанный в ходе предыдущей беседы, состоял только из этих трех элементов. Колебательный контур, в который входили антенна с заземлением, обеспечивали приемнику настройку на волну радиостанции, детектор преобразовывал модулированные колебания радиочастоты в колебания звуковой частоты, которые телефоны преобразовывали в звук. Без них или без любого из них радиоприем невозможен. В чем сущность действия этих обязательных элементов радиоприемного устройства?

Колебательный контур

Устройство простейшего колебательного контура и его схема изображены на рис. 38. Он, как видишь, состоит из катушки L и конденсатора С, образующих замкнутую электрическую цепь. При не1 которых условиях в контуре могут возникать и существовать электрические колебания. Поэтому его и называют колебательным контуром.

Приходилось ли тебе наблюдать такое явление: в момент выключения питания электроосветительной лампы между размыкающимися контактами выключателя появляется искра. Если случайно соединить выводы полюсов батареи электрического карманного фонарика (чего нужно избегать), в момент их разъединения между ними также проскакивает маленькая искра. А на заводах, в цехах фабрик, где рубильниками разрывают электрические цепи, по которым текут токи большой силы, искры могут быть столь значительными, что приходится принимать меры, чтобы они не причинили вреда человеку, включающему ток. Почему возникают эти искры?

Из первой беседы ты уже знаешь, что вокруг проводника с током существует магнитное поле, которое можно изобразить в виде замкнутых магнитных силовых линий, пронизывающих окружающее его пространство. Обнаружить это поле, если оно постоянное, можно с помощью магнитной стрелки компаса. Если отключить проводник от источника тока, то его исчезающее магнитное поле, рассеиваясь в пространстве, будет индуцировать токи в ближайших от него других проводниках. Ток индуцируется и в том проводнике, который создал это магнитное поле. А так как он находится в самой гуще своих же магнитных силовых линий, в нем будет индуцироваться более сильный ток, чем в любом другом проводнике. Направление этого тока будет таким же, каким оно было в момент разрыва проводника. Иначе говоря, исчезающее магнитное поле будет поддерживать создающий его ток до тех пор, пока оно само не исчезнет, т.е. полностью не израсходуется содержащаяся в нем энергия. Следовательно, ток в проводнике течет и после того, как выключен источник тока, но, разумеется, недолго ничтожно малую долю секунды.

Но ведь в разомкнутой цепи движение электронов невозможно, возразишь ты. Да, это так. Но после размыкания цепи электрический ток может некоторое время течь через воздушный промежуток между разъединенными концами проводника, между контактами выключателя или рубильника. Вот этот ток через воздух и образует электрическую искру.

Это явление называют самоиндукцией, а электрическую силу (не путай с явлением индукции, знакомым тебе по первой беседе), которая под действием исчезающего магнитного поля поддерживает в нем ток, электродвижущей силой самоиндукции или, сокращенно, ЭДС самоиндукции. Чем больше ЭДС самоиндукции, тем значительнее может быть искра в месте разрыва электрической цепи.

Явление самоиндукции наблюдается не только при выключении, но и при включении тока. В пространстве, окружающем проводник, магнитное поле возникает сразу при включении тока. Вначале оно слабое, но затем очень быстро усиливается. Усиливающееся магнитное поле тока также возбуждает ток самоиндукции, но этот ток направлен навстречу основному току. Ток самоиндукции мешает мгновенному увеличению основного тока и росту магнитного поля. Однако через короткий промежуток времени основной ток в проводнике преодолевает встречный ток самоиндукции и достигает наибольшего значения, магнитное поле становится постоянным и действие самоиндукции прекращается.

Явление самоиндукции можно сравнивать с явлением инерции. Санки, например, трудно сдвинуть с места. Но когда они наберут скорость, запасутся кинетической энергией энергией движения, их невозможно остановить мгновенно. При торможении санки продолжают скользить до тех пор, пока запасенная ими энергия движения не израсходуется на преодоление трения о снег.

Все ли проводники обладают одинаковой самоиндукцией? Нет! Чем длиннее проводник, тем значительнее самоиндукция. В проводнике, свернутом в катушку, явление самоиндукции сказывается сильнее, чем в прямолинейном проводнике, так как магнитное поле каждого витка катушки наводит ток не только в этом витке, но и в соседних витках этой катушки. Чем больше длина провода в катушке, тем дольше будет существовать в нем ток самоиндукции после выключения основного тока. И наоборот, потребуется больше времени после включения основного тока, чтобы ток в цепи увеличился до определенного значения и установилось постоянное по силе магнитного поле.

Запомни: свойство проводников влиять на ток в цепи при изменении его значения называют индуктивностью, а катушки, в которых наиболее сильно проявляется это свойство, катушками самоиндукции или индуктивности. Чем больше число витков и размеры катушки, тем больше ее индуктивность, тем значительнее влияет она на ток в электрической цепи.

Итак, катушка индуктивности препятствует как нарастанию, так и убыванию тока в электрической цепи. Если она находится в цепи постоянного тока, влияние ее сказывается только при включении и выключении тока. В цепи же переменного тока, где беспрерывно изменяются ток и его магнитное поле, ЭДС самоиндукции катушки действует все время, пока течет ток. Это электрическое явление и используется в первом элементе колебательного контура приемника катушке индуктивности.

Вторым элементом колебательного контура приемника является накопитель электрических зарядов конденсатор. Простейший конденсатор представляет собой два проводника электрического тока, например две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например воздухом или бумагой. Таким конденсатором ты уже пользовался во время опытов с простейшим приемником. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора.

Если к обкладкам конденсатора подключить источник постоянного тока (рис. 39, а), то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока.

Ты можешь спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник постоянного тока, свободные электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным (рис. 39,6). Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким либо проводником (рис. 39, в), лишние электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска.

Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

А теперь, юный друг, вспомни обыкновенные качели. На них можно раскачиваться так, что дух захватывает. Что для этого надо сделать? Сначала подтолкнуть, чтобы вывести качели из положения покоя, а затем прикладывать некоторую силу, но обязательно только в такт с их колебаниями. Без особого труда можно добиться сильных размахов качелей получить большие амплитуды колебаний. Даже маленький мальчик может раскачать на качелях взрослого человека, если будет прикладывать свою силу умеючи. Раскачав качели посильнее, чтобы добиться больших амплитуд колебаний, перестанем подталкивать их. Что произойдет дальше? За счет запасенной энергии они некоторое время свободно качаются, амплитуда их колебаний постепенно убывает, как говорят, колебания затухают, и, наконец, качели остановятся.

При свободных колебаниях качелей, так же как свободно подвешенного маятника, запасенная потенциальная энергия переходит в кинетическую энергию движения, которая в крайней верхней точке вновь переходит в потенциальную, а через долю секунды опять в кинетическую. И так до тех пор, пока не израсходуется весь запас энергии на преодоление трения веревок в местах подвеса качелей и сопротивления воздуха. При сколь угодно большом запасе энергии свободные колебания всегда являются затухающими: с каждым колебанием их амплитуда уменьшается и колебания постепенно совсем затухают качели останавливаются. Но период, т. е. время, в течение которого происходит одно колебание, а значит, и частота колебаний остаются постоянными.

Однако, если качели все время подталкивать в такт с их колебаниями и тем самым пополнять потери энергии, расходуемой на преодоление различных тормозящих сил, колебания станут незатухающими. Это уже не свободные, а вынужденные колебания. Они будут длиться до тех пор, пока не перестанет действовать внешняя подталкивающая сила.

Я вспомнил здесь о качелях потому, что физические явления, происходящие в такой механической колебательной системе, очень схожи с явлениями в электрическом колебательном контуре. Чтобы в контуре возникли электрические колебания, ему надо сообщить энергию, которая подтолкнула бы в нем электроны. Это можно сделать, зарядив, например, его конденсатор.

Разорвем выключателем S колебательный контур и подключим к обкладкам его конденсатора источник постоянного тока, как показано на рис. 40 слева. Конденсатор зарядится до напряжения батареи GB. Затем отключим батарею от конденсатора, а контур замкнем выключателем S. Явления, которые теперь будут происходить в контуре, изображены графически на рис. 40 справа.

В момент замыкания контура выключателем верхняя обкладка конденсатора имеет положительный заряд, а нижняя отрицательный (рис. 40, а). В это время (точка 0 на графике) тока в контуре нет, а вся энергия, накопленная конденсатором, сосредоточена в электрическом поле его диэлектрика. При замыкании конденсатора на катушку конденсатор начнет разряжаться. В катушке появляется ток, а вокруг ее витков магнитное поле. К моменту полной разрядки конденсатора

(рис. 40, б), отмеченному на графике цифрой 1, когда напряжение на его обкладках уменьшится до нуля, ток в катушке и энергия магнитного поля достигнут наибольших значений. Казалось бы, что в этот момент ток в контуре должен был прекратиться. Этого, однако, не произойдет, так как от действия ЭДС самоиндукции, стремящейся поддержать ток, движение электронов в контуре будет продолжаться. Но только до тех пор, пока не израсходуется вся энергия магнитного поля. В катушке в это время будет течь убывающий по значению, но первоначального направления индуцированный ток.

К моменту времени, отмеченному на графике цифрой 2, когда энергия магнитного поля израсходуется, конденсатор вновь окажется заряженным, только теперь на его нижней обкладке будет положительный заряд, а на верхней отрицательный (рис. 40, в). Теперь электроны начнут обратное движение в направлении от верхней обкладки через катушку к нижней обкладке конденсатора. К моменту.3 (рис. 40, г) конденсатор разрядится, а магнитное поле катушки достигнет наибольшего значения. И опять ЭДС самоиндукции погонит по проводу катушки электроны, перезаряжая тем самым конденсатор.

В момент времени 4 (рис. 40, д) состояние электронов в контур будет таким же, как в первоначальный момент 0. Закончилось одно полное колебание. Естественно, что заряженный конденсатор вновь будет разряжаться на катушку, перезаряжаться и произойдут второе, за ним третье, четвертое и т.д. колебания. Другими словами, в контуре возникнет переменный электрический ток, электрические колебания. Но этот колебательный процесс в контуре не бесконечен. Он продолжается до тех пор, пока вся энергия, полученная конденсатором от батареи, не израсходуется на преодоление сопротивления провода катушки контура. Колебания в контуре свободные и, следовательно, затухающие.

Какова частота таких колебаний электронов в контуре? Чтобы подробнее разобраться в этом вопросе, сове тую провести такой опыт с простейшим маятником.

Подвесь на нитке длиной 100 см шарик, слепленный из пластилина, или иной груз массой в 20 40 г (на рис. 41 длина маятника обозначена латинской буквой 1). Выведи маятник из положения равновесия и, пользуясь часами с секундной стрелкой, сосчитай, сколько полных колебаний он делает за 1 мин. Примерно 30. Следовательно, частота колебаний этого маятника равна 0,5 Гц, а период 2 с. За период потенциальная энергия маятника дважды переходит в кинетическую, а кинетическая в потенциальную. Укороти нить наполовину. Частота маятника увеличится примерно в полтора раза и во столько же раз уменьшится период колебаний.

Этот опыт позволяет сделать вывод: с уменьшением длины маятника частота его собственных колебаний увеличивается, а период пропорционально уменьшается.

Изменяя длину подвески маятника, добейся, чтобы его частота колебаний равнялась 1 Гц. Это должно быть при длине нити около 25 см. При этом период колебаний маятника будет равен 1 с. Каким бы ты не пытался создать первоначальный размах маятника, частота его колебаний будет неизменной. Но стоит только укоротить или удлинить нитку, как частота колебаний сразу изменится. При одной и той же длине нитки всегда будет одна и та же частота колебаний. Это собственная частота колебаний маятника. Получить заданную частоту колебаний можно, подбирая длину нити.

Колебания нитяного маятника затухающие. Они могут стать незатухающими только в том случае, если маятник в такт с его колебаниями слегка подталкивать, компенсируя таким образом ту энергию, которую он затрачивает на преодоление сопротивления, оказываемого ему воздухом, энергию трения, земного притяжения.

Собственная частота характерна и для электрического колебательного контура. Она зависит, во первых, от индуктивности катушки. Чем больше число витков и диаметр катушки, тем больше ее индуктивность, тем больше будет длительность периода каждого колебания. Собственная частота колебаний в контуре будет соответственно меньше. И, наоборот, с уменьшением индуктивности катушки сократится период колебаний возрастет собственная частота колебаний в контуре. Во вторых, собственная частота колебаний в контуре зависит от емкости его конденсатора. Чем емкость больше, тем больший заряд может накопить конденсатор, тем больше потребуется времени для его перезарядки, тем меньше частота колебаний в контуре. С уменьшением емкости конденсатора частота колебаний в контуре возрастает. Таким образом, собственную частоту затухающих колебаний в контуре можно регулировать изменением индуктивности катушки или емкости конденсатора.

Но в электрическом контуре, как и в механической колебательной системе, можно получить и незатухающие, т.е. вынужденные колебания, если при каждом колебании пополнять контур дополнительными порциями электрической энергии от какого либо источника переменного тока.

Каким же образом в контуре приемника возбуждаются и поддерживаются незатухающие электрические колебания? Колебания радиочастоты, возбуждающиеся в антенне приемника. Эти колебания сообщают контуру первоначальный заряд, они же и поддерживают ритмичные колебания электронов в конт туре. Но наиболее сильные незатухающие колебания в контуре приемника возникают только в момент резонанса собственной частоты контура с частотой тока в антенне. Как это понимать?

Люди старшего поколения рассказывают, будто в Петербурге от шедших в ногу солдат обвалился Египетский мост. А могло это случиться, видимо, при таких обстоятельствах. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат, и мост, как говорят, вошел в резонанс. Ритм строя сообщал мосту все новые и новые порции энергии. В результате мост настолько раскачался, что обрушился: слаженность воинского строя нанесла вред мосту. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому, между прочим, при прохождении солдат по слабым мостам принято подавать команду сбить ногу.

А вот опыт. Подойди к какому-нибудь струнному музыкальному инструменту и громко крикни а: какая то из струн отзовется зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн она то и отзовется на звук.

Еще один опыт с маятником. Натяни горизонтально нетолстую веревку. Привяжи к ней тот же маятник из нити и пластилина (рис. 42). Перекинь через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведи маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшай длину его подвески амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания растяжки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго.

Такие или подобные явления, только, разумеется, электрического происхождения, наблюдаются и в колебательном контуре приемника. От действия волн многих радиостанций в приемной антенне возбуждаются токи самых различных частот. Нам же из всех колебаний радиочастот надо выбрать только несущую частоту той радиостанции, передачи которой мы хотим слушать. Для этого следует так подобрать число витков катушки и емкость конденсатора колебательного контура, чтобы его собственная частота совпадала с частотой тока, создаваемого в антенне радиоволнами интересующей нас станции. В этом случае в контуре возникнут наиболее сильные колебания с несущей частотой той радиостанции, на волну которой он настроен. Это и есть настройка контура приемника в резонанс с частотой передающей станции. При этом сигналы других станций совсем не слышны или прослушиваются очень тихо, так как возбуждаемые ими колебания в контуре будут во много раз более слабыми.

Таким образом, настраивая контур своего первого приемника в резонанс с несущей частотой радиостанции, ты с его помощью как бы отбирал, выделял колебания частоты только этой станции. Чем лучше контур будет выделять нужные колебания из антенны, тем выше селективность приемника, тем слабее будут помехи со стороны других радиостанций.

До сих пор я рассказывал тебе о замкнутом колебательном контуре, т.е. контуре, собственная частота которого определяется только индуктивностью катушки и емкостью конденсатора, образующих его. Однако во входной контур приемника входят также антенна и заземление. Это уже не замкнутый, а открытый колебательный контур. Дело в том, что провод антенны и земля являются обкладками конденсатора (рис. 43), обладающего некоторой электрической емкостью. В зависимости от длины провода и высоты антенны над, землей эта емкость может составлять несколько сотен пикофарад. Такой конденсатор на рис. 34, а был показан штриховыми линиями. Но ведь антенну и землю можно рассматривать и как неполный виток большой катушки. Стало быть, антенна и заземление, взятые вместе, обладают еще и индуктивностью. А емкость совместно с индуктивностью образуют колебательный контур.

Такой контур, являющийся открытым колебательным контуром, тоже обладает собственной частотой колебаний. Включая между антенной и землей катушки индуктивности и конденсаторы, мы можем изменять его собственную частоту, настраивать его в резонанс с частотами разных радиостанций. Как это делается на практике, ты уже знаешь.

Я не ошибусь, если скажу, что колебательный контур является сердцем радиоприемника. И не только радиоприемника. В этом ты еще убедишься. Поэтому ему я и уделил много внимания.

Перехожу ко второму элементу приемника детектору.

Страницы истории

Радио (лат. radio - излучаю, испускаю лучи radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.


Принцип работы

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).


Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)


В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на больши м е расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.


Распространение радиоволн

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называется
многолучёвостью . Вследствие многолучёвости и изменений параметров среды, возникают замирания (англ. fading )- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Особые эффекты

эффект антиподов- радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику.
Описанные примеры:

  • радиосвязьЭ.Кренкеля(RPX), находившегося наЗемле Франца-Иосифа12 января 1930г. сАнтарктикой(WFA).
  • радиосвязь плотаКон-Тики(приблизительно 6° ю.ш. 60° з.д.) сОсло, передатчик 6 Ватт.
  • эхо от волны, обошедшей Землю (фиксированная задержка)
  • редко наблюдаемый и малоизученный эффект LDE (Мировое эхо, эхо с большой задержкой).
  • эффект Доплераизменение частоты (длины волны) в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника. При их сближении частота увеличивается, при взаимном удалении уменьшается.


Радиосвязь можно разделить на радиосвязь без применения ретрансляторов по длинам волн:

  • СДВ-связь
  • ДВ-связь
  • СВ-связь
  • КВ-связь
  • КВ-связь земной (поверхностной) волной
  • КВ-связь ионосферной (пространственной волной)волной
  • УКВ-связь
  • УКВ связь прямой видимости
  • тропосферная связь
  • С применением ретрансляторов:
  • Спутниковая связь,
  • Радиорелейная связь,
  • Сотовая связь.


Использование широковещательной потоковой передачи

Содержимое, передаваемое потоком с широковещательной передачей, больше всего подходит для сценариев, напоминающих просмотр телевизионной программы, при этом управление и потоковая передача содержимого выполняется из пункта источника или сервера. Этот тип пункта публикации наиболее часто используется для передачи прямых потоковых данных от кодировщиков, удалённых серверов или других широковещательных пунктов публикации. Если клиент подключается к широковещательному пункту публикации, то он получает широковещательные данные, трансляция которых уже началась. Например, если в 10:00 начинается трансляция совещания в компании, то клиенты, подключившиеся в 10:18, пропустят только первые 18 минут совещания. Клиенты могут запускать и останавливать поток, однако они не могут приостановить его, перемотать вперёд, назад или пропустить.
Кроме того, на широковещательном пункте публикации можно выполнять потоковую передачу файлов и списков воспроизведения файлов. Если источником файлов служит широковещательный пункт публикации, то сервер передаёт файл или список воспроизведения как широковещательный поток. При этом в проигрывателе нельзя управлять воспроизведением, как в случае с потоком по запросу. Пользователи получают широковещательные данные прямого закодированного потока. Клиенты начинают воспроизводить уже передаваемый поток.
Обычно широковещательный пункт публикации начинает потоковую передачу сразу после запуска и продолжает её до тех пор, пока он не будет остановлен или пока не закончится содержимое.
Содержимое с широковещательного пункта публикации можно предоставлять как одноадресный или многоадресный поток. Поток с широковещательного пункта публикации можно сохранить как файл архива, а затем предложить его конечным пользователям в качестве повтора исходных широковещательных данных по запросу.

Гражданская радиосвязь

Решениями ГКРЧ России (Государственной комиссии по радиочастотам) для гражданской связи физическими и юридическими лицами на территории Российской Федерации выделены 3 группы частот:

  • 27МГц (Си-Би, «Citizens’ Band», гражданский диапазон), с разрешённой выходной мощностью передатчика до 10Вт. Автомобильныерациидиапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
  • 433МГц (LPD, «Low Power Device»), выделено 69 каналов длярацийс выходной мощностью передатчика не более 0,01Вт;
  • 446МГц (PMR, «Personal Mobile Radio»), выделено 8 каналов длярацийс выходной мощностью передатчика не более 0,5Вт.


Радио используется в компьютерных сетях AMPRNet, в которых соединение обеспечивается любительскими радиостанциями.

Радиолюбительская связь

Радиолюбительская связь- многогранное техническоехобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей, например:

  • конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
  • участие в различных соревнованиях по радиосвязи (радиоспорт);
  • коллекционированиекарточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/илидипломов, выдаваемых за проведение тех или иных связей;
  • поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, с которых крайне редко работают любительские радиостанции ( DXing );
  • работа какими-то определёнными видами излучения (телеграфия, телефония соднополоснойиличастотной модуляцией,цифровые виды связи);
  • связь на УКВ с использованием отражения радиоволн от Луны (EME), от зонполярного сияния(«Аврора»), отметеорных потоков, с ретрансляцией через радиолюбительскиеИСЗ;
  • работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
  • участие в радиоэкспедициях- выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.



Top