Процедуры минимизации. Анализ и синтез логических устройств. Методы минимизации логических функций и схем. Логические функции и их преобразование

Методы поиска минимумов функций. Поиск максимумов сводится к поиску минимумов путем изменения знака ф-ции. М. ф. м.- раздел вычислительной математики, играющий большую роль в таких приложениях, как выбор оптим. вариантов в задачах планирования, проектирования и операций исследования, управления технологическими процессами, управления движением сложных объектов и т. п. М. ф. м. применяются также для решения систем ур-ний и неравенств при отыскании спектра операторов, при решении краевых задач и т. п.

Наиболее изучены М. ф. м- применительно к ф-циям, определенным во всем -мерном евклидовом простр. Рассмотрим их, не касаясь дискретных и дискретно-непрерывных задач минимизации, а также задач минимизации при наличии ограничений. Последние во многих случаях можно свести к задаче безусловной минимизации (напр., с использованием штрафных ф-ций). Не будем рассматривать методы нахождения минимума, основанные на непосредственном использовании необходимых условий экстремума, т. к. решение получаемых при этом систем нелинейных ур-ний можно рассматривать как задачу минимизации суммы квадратов невязок (или максимума модуля невязок). Возможность применения и сравнительная эффективность различных М. ф. м. во многом определяется классом ф-ций, к которому они применяются. Большинство М. ф. м. дают возможность находить локальный минимум, и лишь априорная информация о свойствах ф-ции (выпуклость, унимодальность) позволяет считать этот минимум глобальным. Методы, гарантирующие поиск глобального минимума с заданной точностью для достаточно общих классов ф-ций, являются весьма трудоемкими. На

практике для нахождения глобального минимума в основном используется сочетание Монте-Карло метода и одного из методов локальной минимизации.

Широкий класс М. ф. м. описывают следующей вычислительной схемой. Пусть минимизируемая ф-ция, определенная в произвольно выбранная начальная точка. Допустим, что имеет непрерывные частные производные до порядка включительно будем рассматривать как производную нулевого порядка). Для получения последовательных приближений к локальному минимуму строится последовательность точек по ф-лам следующего вида:

где обозначает вектор частных производных порядка вычислимые ф-ции своих аргументов. Порядок высших частных производных, вычисляемых для реализации ф-лы (1), наз. порядком метода. Осн. группа применяемых на практике методов имеет ту особенность, что информация, необходимая для вычисления очередного значения выражается через ограниченное к-во параметров, вычисляемых на данном шаге и предыдущих шагах процесса. Метод называют -ступенчатым, если схема алгоритма имеет, начиная с некоторого следующую структуру: на шаге вычисляем параметры где - некоторое натуральное число, и вектор по ф-лам следующего вида:

(начальные параметры вычисляются с помощью спец. процедур). В широко распространенных методах спуска оператор конкретизируется в следующей форме:

где вещественное число, которое наз. шаговым множителем, вектор определяет направление спуска. Среди методов спуска выделяются методы монотонного спуска или релаксационные методы. Метод релаксационным, если при к Бели непрерывно дифференцируема, то релаксационность метода (3) обеспечивается, когда направление спуска образует острый угол с направлением градиента и достаточно мал. Обшая теория релаксационных процессов развита наиболее полно для случая выпуклых ф-ций. В качестве осн. параметров, характеризующих процесс, рассматриваются углы релаксации между и направлением градиента), а также множители релаксации определяемые равенством

где градиент ф-ции (для квадратичного функционала при наискорейшем спуске). Обозначим через приведенный коэфф. релаксации. Необходимое и достаточное условие сходимости релаксационного процесса для сильно выпуклой ф-ции :

Среди релаксационных методов наиболее известны градиентные методы. Рассмотрим более подробно одноступенчатые методы градиентного типа. Общая схема их следующая:

В рамках этой схемы можно выделить такие модификации:

а) градиентный спуск с постоянным шагом: единичная матрица;

б) наискорейший градиентный спуск: , где определяется из условия минимума

в) метод Ньютона-Рафсона: , где - гессиан в точке

г) промежуточные схемы: . К числу наиболее распространенных двухступенчатых градиентных методов можно отнести методы сопряженных градиентов; примером двухступенчатой схемы является метод сопряженных градиентов Флетчера - Ривза:

Методы a) и б) при достаточно общих условиях (первый - при достаточно малом а) сходятся к локальному минимуму со скоростью геом. прогрессии. Метод в) при достаточно общих условиях сходится из достаточно малой окрестности минимума с квадратичной скоростью. Промежуточная схема г) более гибкая и позволяет при определенной регулировке последовательностей также получить квадратическую скорость сходимости при более слабых требованиях на начальное приближение.

Недостатком методов в), г) является необходимость вычисления гессиана. От этого недостатка избавлены методы сопряженных градиентов и так называемые алгоритмы с изменяемой метрикой, обладающие свойствами ускоренной сходимости для достаточно гладких ф-ций в окрестности минимума. Схемы алгоритмов с изменяемой метрикой по своему характеру являются комбинацией схемы сопряженных градиентов и метода Ньютона - Рафсона. Одновременно с движением по схеме типа сопряженных градиентов происходит итеративная аппроксимация матрицы, обратной гессиану в точке минимума. После каждых п шагов процесса происходит шаг по методу Ньютона-Рафсона, где вместо выступает ее аппроксимация.

Если градиент разрывен, перечисленные выше методы не применимы. Поэтому большое значение имеют методы минимизации выпуклых (не обязательно дифференцируемых) ф-ций; эти методы можно условно разбить на 2 группы: 1) методы градиентного типа и 2) методы «секущих плоскостей». К 1-й группе относятся различные модификации обобщенных градиентов метода, а также схемы с ускоренной сходимостью, основанные на растяжении простр. в направлении градиента или разности двух последовательных градиентов. К методам 2-й группы относится, напр., метод Келли. Пусть ЗП - выпуклое (ограниченное) мн-во, на котором определена последовательность точек, в которых вычисляется обобщенный градиент . Тогда находится как решение задачи: найти

Метод Келли сходится по функционалу при любом начальном . Из распространенных методов минимизации следует отметить, в частности, метод оврагов для минимизации ф-ций с сильно вытянутыми гиперповерхностями уровня; методы покоординатного поискас изменяемой системой координат; методы случайного поиска; комбинированные методы быстрого спуска и случайного поиска, когда направление убывания ф-ции находится методом Монте-Карло; методы дифференциального спуска, стохастической аппроксимации методы и др. В задачах оптим. регулирования большое значение имеют методы поиска нулевого порядка. В основе алгоритмов минимизации для этого случая обычно лежит идея линейной или квадратичной аппроксимации минимизируемой ф-ции или разностной аппроксимации соответствующих частных производных. Для поиска экстремума глобального предложен ряд методов. Осн. из них: метод Монте-Карло, комбинация метода Монте-Карло определения начальной точки с одним из алгоритмов локального поиска, методы, основанные на построении нижней огибающей данной ф-ции, методы последовательного отсечения подмн-в, методы построения траекторий, всюду плотно покрывающих область определения ф-ции, и минимизации вдоль этих траекторий.

Для решения спец. классов многоэкстремальных задач используются методы программирования динамического.

В наст, время создаются оптим. алгоритмы минимизации ф-ций разных классов. Пусть класс ф-ций, определенных в кубе , и имеющих в частные производные до s-го порядка, удовлетворяющие условию Липшица с константой L. Любой алгоритм минимизации из , использующий информацию о значениях f и ее производных до порядка включительно не более чем в N точках эквивалентен (в смысле результата) некоторому алгоритму А получения последовательности итераций (1) для и аппроксимации искомого значения при помощи итоговой операции

где - некоторая вычислимая ф-ция. Введем следующие обозначения:

Алгоритм, для которого достигается оптимальным. Условия означают соответственно асимптотическую оптимальность и оптимальность по порядку алгоритма Можно показать, что

причем выбор , влияет лишь на константу в указанной оценке. В частном случае и имеем:

где миним. сеть в .

Другой подход к построению оптим. алгоритмов минимизации связан с обобщением идей последовательных статистических решений. Алгоритм минимизации рассматривается как управляемая последовательность опытов, каждый из которых дает тот или иной исход. На совокупности исходов определяется априорная вероятностная мера. После получения конкретного исхода очередного опыта происходит перераспределение вероятностей по ф-ле Байеса и выбирается следующий опыт или принимается окончательное решение. Алгоритмы отличаются друг от друга правилом, по которому выбирается следующий опыт, правилами остановки и выбора окончательного решения. Качество решения определяется ф-цией потерь, которая усредняется в соответствии с полученным на данном этапе вероятностным распределением. В этих терминах ставится задача выбора оптим. алгоритма как построения последовательного байесовского правила поиска решений. Такая постановка интересна тем, что в ее рамках можно учитывать статистические свойства класса решаемых задач, сопоставлять «средние» потери, связанныз с погрешностью решения, с затратами, связанными с уточнением решения. Лит.: Любич Ю. И., Майстровский Г. Д. Общая теория релаксационных процессов для выпуклых функционалов. «Успехи математических наук», 1970, т. 25, в. 1; Михалевич В. С. Последовательные алгоритмы оптимизации и их применение. «Кибернетика», 1965, N5 1-2; Иванов В. В. Об оптимальных алгоритмах минимизации функций некоторых классов. «Кибернетика», 1972, № 4; Уайлд Д. Дк. Методы поиска экстремума. Пер. с англ. М., 1967.

В. В. Иванов, В. С. Михалевич, Н. 3. Шор.

Наиболее употребляемая операция при минимизации функций - это операция склеивания.

AB+ ВB=B (A+ В)=B.

Рассмотрим три наиболее распространенных метода минимизации.

1. Пусть будут заданы номера наборов четырех переменных, на которых логическая функция принимает единичное значение: f (2,5,6,7,10,12,13,14)=1.

Выразим эту логическую функцию в СДНФ (символ конъюнкции писать не будем):

f (0010,0101, 0110, 0111, 1010, 1100, 1101, 1110) =

На первом этапе минимизации исходную СДНФ можно упростить за счет использования закона склеивания, тогда получим:

Обращаем внимание на то, что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:

поэтому любую конституенту можно размножить.

На втором этапе воспользуемся таблицей Куайна (табл. 8), в соответствии с которой данный метод минимизации получил свое наименование - метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали - исходные конституенты. Единица в табл. 8 стоит там, где импликанта «накрывает» конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:

Таблица 8

После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы затемнены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:

С помощью таблиц истинности легко проверить, что полученная в МНФ функция воспроизводит все значения исходной функции. Отметим, что в общем случае решений по критерию минимума термов может быть несколько.

2. Не менее эффективным способом минимизации логических функций является метод сочетания индексов. Для его изложения составим табл. 9, в графах которой записаны возможные сочетания индексов. В последней графе выписаны значения функции. Анализ таблицы начинается слева по столбцам. Принцип исключения i, j_кода следующий. На пересечении i_столбца, например, с сочетанием индексов 23, и j_строки, например, 3_ей, находится код 10, что соответствует импликанте. Следовательно, в этом столбце везде, где встречается код 10, т. е. в строках 2, 3, 10 и 11, эти коды исключаются, поскольку значение функции в 3_ей строке равно нулю. Теперь возьмем столбец с сочетанием индексов 124. Здесь во 2_ой и 6_ой строках оставлены коды 010, а в 10_ой и 14_ой строках - код 011. Сделано это потому, что эти коды встречаются только на строках со значением функции, равным единице. Напротив, код 110 этого же столбца встречается как при единичных значениях функции, так и при нулевых.

Таблица 9

Итак, все коды на строках, заканчивающихся нулевыми значениями функции, исключаются автоматически. Если эти коды попадают на строки, заканчивающиеся единичным значением функции, то они также не учитываются. Остаются только те коды, которые расположены на строках с единичным значением функции (эти коды затемнены).

Далее руководствуются следующим правилом. Для того чтобы функция приняла значение, равное единице, достаточно того, чтобы только какая-нибудь одна импликанта на строке приняла единичное значение. Прежде всего, оставляем минимальную импликанту, которая перекрывает единицы в строках 2, 6, 10 и 14. Затем, естественно, обращаемся к 12_ой строке. Здесь оставляем единственный на строке код 011, что отвечает импликанте. Эта же импликанта ответственна за 13_ую строку, оканчивающуюся тоже единицей. Осталось рассмотреть 5_ую и 7_ую строки. Общей для них является импликанта: . Таким образом, тремя импликантами мы перекрыли все единичные значения функции, что совпадает с результатом, полученным на основе таблиц Куайна.

3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

Таблица 10

Получили два слагаемых

Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

Таблица 11

Таблица 12

Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:

Все логические функции задаются либо в виде формулы, либо в виде таблицы значений. Иногда бывает нужно определить простейшую форму записи этой функции с минимальным количеством элементарных логических функций И, ИЛИ, НЕ для удобства работы. Для этого используются все рассмотренные операции начиная с №4 и методы Квайна и Вейча.

Метод Квайна позволяет найти простейшую нормальную дизъюнктивную форму логического выражения, т.е. записать логическое выражение в виде дизъюнкции или конъюнкции, при этом знак инверсии может стоять только над одним аргументом или не стоять вообще. Алгоритм дается в специальной литературе.

Метод Вейча (карты Карно)

В этом методе для изображения функции n переменных рисуется специальная таблица, которая содержит 2 n клеток. В каждой клетке ставится соответствие одному из наборов n переменных. В клетке записывается значение, принимаемое функцией при этом наборе аргументов. Все клетки, соответствующие наборам содержащие некоторую переменную без знака инверсии образуют область из 2 n -1 клеток. Эта область называется областью данной переменной (например, область переменной х). Остальные клетки образуют область этой инверсной переменной. Возможные наборы аргументов распределены по клеткам таким образом, чтобы границы областей всех переменных и их инверсии были четки, а принадлежность любой клетки к той или иной область зрительно легко выявлялась.

1) Функция одной переменной:

2) Функция двух переменных:

3) Диаграмма для дизъюнкции:

4) Диаграмма для конъюнкции:

5) Для трех аргументов:

6) Для четырех аргументов:

Можно минимизировать заданное логическое выражение, объединив в группы стоящие рядом единицы и при этом исключать ту переменную, которая переходит из прямого в инверсное состояние. Объединять можно не только по вертикали и горизонтали, но и по краям, так как в общем случае карта Карно образует тор. Пример:

б)

  • 1.6. Использование множеств в языке Паскаль
  • 2. Элементы общей алгебры
  • 2.1. Операции на множествах
  • 2.2. Группа подстановок Галуа
  • 2.3. Алгебра множеств (алгебра Кантора)
  • 2.4. Алгебраические системы. Решетки
  • 2.5. Задание множеств конституентами
  • 2.6. Решение уравнений в алгебре множеств.
  • 3. Элементы комбинаторики
  • 3.1. Комбинаторные вычисления
  • 3.2. Основные понятия комбинаторики
  • 3.3. Размещения
  • 3.4. Перестановки
  • 3.5. Сочетания
  • 3.6. Треугольник Паскаля.
  • 3.7. Бином Ньютона
  • 3.8. Решение комбинаторных уравнений
  • 4. Основные понятия теории графов
  • 4.1. Способы задания графов
  • 4.2. Характеристики графов
  • 4.3. Понятие о задачах на графах
  • 4.4. Задача о Ханойской башне
  • 5. Переключательные функции и способы их задания
  • 5.1. Понятие о переключательных функциях
  • 5.2. Двоичные переключательные функции и способы их задания
  • 5.3. Основные бинарные логические операции
  • 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
  • 5.5. Использование логических операций в теории графов
  • 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
  • 6.1. Элементарные переключательные функции одной переменной
  • 6.2. Элементарные переключательные (логические) функции двух переменных
  • 6.3. Функциональная полнота систем переключательных функций
  • 6.4. Базисы представления переключательных функций
  • 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
  • 7. Основные законы булевой алгебры и преобразование переключательных функций
  • 7.1. Основные законы булевой алгебры переключательных функций
  • 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
  • 7.3. Преобразование форм представления переключательных функций
  • 8. Минимизация переключательных функций
  • 8.1. Цель минимизации переключательных функций
  • 8.2. Основные понятия и определения, используемые при минимизации
  • 8.3. Аналитические методы минимизации переключательных функций
  • 8.4. Минимизация переключательных функций по картам Карно
  • 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
  • Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
  • 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
  • 8.7. Минимизация систем переключательных функций
  • 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
  • 9. Понятие об автомате и его математическом описании
  • 9.1. Основные определения теории конечных автоматов
  • 9.2. Описание конечных детерминированных автоматов
  • 9.3. Понятие о технической интерпретации конечных автоматов
  • 9.4. Синтез комбинационных автоматов в заданном базисе
  • 9.5. Булева производная
  • 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
  • 9.7. Синтез автомата – распознавателя последовательности
  • 10. Элементы теории кодирования
  • 10.1. Понятие о кодировании
  • 10.2. Системы счисления, как основа различных кодов
  • 10.3. Понятие о помехоустойчивом кодировании
  • 10.4. Кодирование по Хэммингу
  • 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
  • 10.6. Понятие о криптографической защите информации
  • 10.7. Понятие о сжатии информации
  • 8.3. Аналитические методы минимизации переключательных функций

    Метод Квайна .

    Метод основан на попарном сравнении и склеивании при возможности всех конституент (членов СДНФ). Для этого каждая конституента сравнивается с последующими, что приводит к получению импликант. Полученные импликанты вновь подвергаются сравнению и при возможности склеиваются – и т.д. до тех пор, пока оставшиеся импликанты уже не будут поддаваться склеиванию. Это и есть простые импликанты, их дизъюнкция представляет собой сокращенную ДНФ.

    Для упорядочения целесообразно разбивать конституенты на группы по числу неинверсированных переменных. В этом случае каждая очередная конституента, начиная сверху, сравнивается только с конституентами группы, соседней снизу, с числом неинверсированных переменных на единицу больше.

    Пусть имеется переключательная функция, заданная СДНФ:

    Разобьем конституенты на группы по числу неинверсированных переменных.

    Римская цифра номера группы соответствует числу неинверсных переменных. Проведем линии, указывающие склеиваемые конституенты. Результатом склеивания является всегда элементарная конъюнкция, представляющая собой общую часть исходных конъюнкций (в частности, конституент).

    Полученные импликанты также допускают склеивание, причем в результате получается одна и та же импликанта
    .

    Дальнейшие склеивания невозможны, поэтому полученные импликанты – простые, а сокращенная ДНФ имеет вид:

    Первый этап выполнен. На втором этапе необходимо исключить лишние простые импликанты. Это делается с помощью специальной импликантной таблицы Квайна (таблицы покрытий). Строки таблицы отмечаются простыми импликантами переключательной функции, т.е. членами сокращенной ДНФ, а столбцы – конституентами единицы, т.е. членами СДНФ переключательной функции.

    Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной таблицы на пересечении строки данной простой импликанты и столбцов с конституентами единицы отмечается, например, знаком «+». Минимальные ДНФ строятся по импликантной таблице следующим образом:

    1) ищутся столбцы импликантной таблицы, имеющие только один крестик, соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро переключательной функции. Ядро обязательно входит в минимальную ДНФ;

    2) рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв.

    Ядром нашей функции (табл. 35) являются импликанты
    и х 1 х 2 х 3 , т.е. функция имеет единственную тупиковую и минимальную ДНФ:

    Таблица 35

    Импликантная таблица Квайна

    Конституенты 1 (члены СДНФ)

    импли-канты

    Видно, что импликанта х 2 х 3 х 4 является лишней, так как она покрывает конституенты, уже покрытые импликантами
    , х 1 х 2 х 3 .

    Число крестиков в строке является степенью числа 2; более того, можно убедиться, что оно равно N=2 n - k , где k – число букв в простой импликанте, n – число переменных, от которых зависит функция.

    Если вначале не задана СДНФ, то ее надо получить, используя, например, уже известные нам методы.

    Ясно, что для больших импликантных таблиц трудно визуально выявить варианты с минимальным числом букв. Поэтому используется метод Петрика, позволяющий получать все тупиковые ДНФ по импликантной таблице путем построения так называемого конъюнктивного ее представления. Для этого все простые импликанты обозначаются разными буквами (А, В, С в табл. 35), а затем для каждого столбца строится дизъюнкция всех букв, обозначающих строки таблицы, пересечение которых с данным столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов. К конъюнктивному представлению импликантной таблицы могут быть применены все соотношения булевой алгебры переключательных функций с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ.

    Это означает, что тупиковая ДНФ содержит две простые импликанты (
    и одновременно С=х 1 х 2 х 3) и имеет вид:

    Метод Квайна-Мак-Класки.

    Метод представляет собой формализацию метода Квайна, ориентированную на использование ЭВМ. Формализация заключается в записи конституент единицы (членов СДНФ) их двоичными номерами. Все номера разбиваются на непересекающиеся группы по числу единиц в двоичном номере. Склеивания производятся только между соседними группами. Ликвидируемый разряд обозначается знаком «–» («тире»). Дальнейшие группы из полученных импликант образуются с учетом однинакового расположения тире. Такое обозначение импликант называется обобщенными кодами. Пусть задана логическая функция

    111101001000110.

    Сгруппируем эти конституенты единицы по числу единиц:

    Дальнейшие склеивания невозможны. Нахождение минимальных ДНФ далее производится по импликантной таблице (табл. 36):

    Это означает, что тупиковые ДНФ содержат по три простые импликанты и имеют вид:

    (две инверсии);

    (три инверсии).

    Таблица 36

    Импликантная таблица Квайна-Мак-Класки

    импликанты

    Конституенты единиц

    Заметим, что склеивание двух импликант с тире возможно только при соответствующем их расположении, например:

    Можно выбрать любую из полученных ТДНФ, а с учетом меньшего числа инверсий – первую.

    Метод Блейка-Порецкого .

    Метод позволяет получать сокращенную ДНФ булевой функции по ее произвольной ДНФ, а не по СДНФ, как в методах Квайна и Квайна-Мак-Класки, используя закон обобщенного склеивания . В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции провести всевозможные операции, обратные обобщенному склеиванию, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции.

    Пусть задана ДНФ функции:

    Видно, что к первой и второй конъюнкциям можно применить закон обобщенного склеивания по переменной х 1 ; получим:

    Аналогично для первой и третьей конъюнкций:

    т.е. все остается, как есть!

    Вторая и третья конъюнкции допускают обобщенное склеивание по х 2:

    Переходим к ДНФ:

    После применения закона идемпотентности (повторения) и поглощения получаем:

    Попытки дальнейшего применения обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции.

    Таблица 37

    Импликантная таблица для иллюстрации метода Блейка-Порецкого

    импликанты

    Наборы функции

    и ее значения

    Таким образом, рабочие (единичные) наборы можно покрыть тремя простыми импликантами, например,
    ,
    ,
    . В ядро входят импликанты
    ,
    . Тогда тупиковые ДНФ имеют вид:

    (лучше по числу инверсий).



    
    Top