При использовании двух интеграторов с обратной связью. Интеграторы на основе операционных усилителей

Интегратор и дифференциатор - это две важные вычислительные схемы, которые используются на операционном усилителе.

Интегратор

Интегратор - схема, имеющая выходное напряжение, равное сумме его входных напряжений за последовательные промежутки времени.

В схеме интегратора входной сигнал Ein подается на инвертирующий входной зажим; неинвертирующий входной зажим заземлен. Входной сигнал формируется через входной резистор Rin. Интегратор аналогичен инвертирующему усилителю за исключением одной особенности: вместо резистора в цепи обратной связи у него имеется конденсатор. Этот конденсатор Cfb называется конденсатором цепи обратной связи.

Выходной сигнал инвертирующего усилителя формируется через резистор цепи обратной связи. А в интеграторе выходное напряжение Eout формируется через конденсатор цепи обратной связи. При подаче на схему входного сигнала конденсатор заряжается для формирования выхода. Именно конденсатор делает схему интегрирующей. Поэтому для понимания работы схемы интегратора нужно рассмотреть, как действует конденсатор.


Важным вопросом в схеме интегратора является то, за какое время произойдет заряжание конденсатора до определенной величины.

На практике достижимый уровень выходного напряжения ограничен - оно никогда не может превысить напряжение питания. При постоянной величине входного сигнала конденсатор зарядится до уровня напряжения питания, но не больше. В этот момент произойдет насыщение операционного усилителя. Разумеется, на практике величина входного сигнала обычно изменяется, пока будет достигнуто насыщение.

В электронных контрольно-измерительных приборах скорость заряжания конденсатора в интеграторе обычно регулируется изменением значения Rin или Сfb. Например, регулятор возврата в электронном контроллере часто изменяет величину сопротивления Rin.

Дифференциатор

Дифференциатор - тип операционного усилителя, действие которого прямо противоположно действию интегратора. Иными словами, при наличии изменяющегося входного напряжения в какой-то период времени в дифференциаторе образуется неизменное выходное напряжение.

В схеме дифференциатора входное напряжение Ein подается на инвертирующий зажим, неинвертирующий зажим заземлен. В действительности, и для интеграторов, и для дифференциаторов нет необходимости в заземлении неинвертирующего зажима - на него может подаваться напряжение. В таком случае напряжение на неинвертирующем зажиме будет служить опорным напряжением, и выходное напряжение будет соотноситься с ним. Выходное напряжение Eout формируется через резистор цепи обратной связи Rfb.


Так же как интегратор, дифференциатор напоминает инвертирующий усилитель. Основным отличием является то, что входное напряжение в дифференциаторе образуется через входной конденсатор Cin, а не через входной резистор. Действие дифференциатора основано на том, как конденсатор реагирует на изменение входного напряжения.

В дифференциаторе зависимость между током в конденсаторе и выходным напряжением дифференциатора прямая - то есть, выходное напряжение дифференциатора будет высоким при сильном токе, выходное напряжение низкое при слабом токе в конденсаторе.

Следовательно, выходное напряжение дифференциатора будет высоким, когда входное напряжение Ein изменяется быстро, и оно будет низким, когда Ein изменяется медленно. Разумеется, если Ein постоянно, независимо от уровня, выходное напряжение дифференциатора будет равно 0 В.

Поскольку дифференциатор образует неизменное выходное напряжение с уровнем, пропорциональным скорости изменения входного напряжения, он часто используется для формирования управляющего сигнала скорости изменения процесса в электронных контроллерах. При его использовании схема управления скоростью подает управляющий сигнал, который прямо связан со скоростью изменения переменного параметра процесса. Если переменный параметр процесса изменяется быстро, в контроллере образуется управляющий сигнал высокого уровня. Более слабые управляющие сигналы образуются при медленном изменении переменного параметра процесса.

Регуляторы скорости в электронных контроллерах обычно изменяют величину конденсатора в схеме дифференциатора. Изменение величины конденсатора влияет на уровень выходного напряжения, образующегося при данном входном напряжении. Поэтому в электронных контроллерах применяется регулировка скорости для варьирования «величины» управляющего воздействия, производимого для данного изменения переменного параметра процесса.

Сумматором называется устройство, выходное напряжение которого является суммой напряжений на его входе. Схема инвертирующего сумматора, приведенная на рис. 3.11, выполнена по типу инвертирующего усилителя, но ее входная цепь представляет собой n параллельных ветвей, каждая из которых содержит резисторR (i = 1, 2, …n), гдеn – число напряжений, подлежащих суммированию.

Соотношение, связывающее величины напряжений входных и выходного сигналов, получается на основе тех же предпосылок, что и при рассмотрении инвертирующего усилителя. Только к узлу “а” на входе ОУ подходит не один ток, а n – токов. Следовательно,

i= . (3.16)

Поэтому аналогично соотношению (3.5) при u= 0можно записать

= - . (3.17)

u
= - R
. (3.18)

Рисунок 3.11. Схема инвертирующего сумматора на ОУ

Из соотношения (3.18) следует, что схема на рис. 3.11 производит суммирование сигналов с одновременным умножением каждого из слагаемых на величину, зависящую от сопротивления резистора Rв соответствующей входной ветви. Для простого суммирования сопротивления всех резисторов схемы должны быть равны

R= R= … = R = R.

Схема неинвертирующего сумматора представлена на рис. 3.12. Она отличается от схемы неинвертирующего усилителя лишь наличием параллельных ветвей на неинвертирующем входе ОУ. Каждая из этих ветвей содержит резистор R, i = 1, 2, …n, гдеn– число суммируемых сигналов.

Поскольку входное сопротивление ОУ бесконечно велико, ток на входе ОУ, являющийся в схеме рис. 3.12 суммой токов всех входных ветвей, равен нулю. Поэтому:

= 0, (3.19)

где u- напряжение на неинвертирующем входе ОУ, которое, как отмечалось выше, совпадает с величиной напряжения на инвертирующем входе ОУ и определяется соотношением (3.8). Поэтому:

u
= (1 + ) .(3.20)

Таким образом, схема рис. 3.12 в общем случае может суммировать сигналы с соответствующим умножением каждого из слагаемых. Для простого суммирования необходимо, кроме равенства сопротивлений резисторов R, выбрать сопротивления резисторов Rи Rтакими, чтобы

R = (n – 1) R.

Рис.3.12. Схема неинвертирующего сумматора на ОУ

Следует иметь в виду, что при суммировании напряжение на выходе схем рис. 3.11 и 3.12 не должно превышать напряжение насыщения U вых max используемого ОУ.

3. Интегратор и дифференциатор на оу

Интегратором называется устройство, временная зависимость напряжения на выходе которого пропорциональна интегралу по времени входного напряжения. Его схема может быть выполнена по схеме инвертирующего усилителя при замене резистора в цепи обратной связи на конденсатор C, как показано на рис. 3.13. Для узла “а” этой схемы выполняется условие (3.2), а поскольку ток в цепи обратной связи обусловлен зарядом конденсатора при подаче входного сигнала, соотношение, аналогичное (3.5), может быть представлено в виде:

C
= . (3.21)

u
= -
,

где u
- выходное напряжение приt = 0. Отсчет времени обычно ведется с момента поступления на вход интегратора сигнала. Если до этого времени напряжение на входе интегратора отсутствовало, u
= 0.

u
= -
. (3.22)

Рисунок 3.13. Схема интегратора на ОУ

Таким образом, интегратор со схемой рис. 3.13, наряду с изменением полярности сигнала, осуществляет изменение его структуры. Это свойство используется для формирования импульсов специального вида, например, пилообразного, что иллюстрируется временной диаграммой рис. 3.14. Для получения такого импульса на вход интегратора необходимо подать прямоугольный импульс. Согласно соотношению (3.28), в течение длительности импульса τ выходное напряжение изменяется линейно

u вых = -
,

а в конце импульса достигнет величины

U вых =
τ,

где τ – длительность импульса. Наклон “пилы” определяется амплитудой прямоугольного импульса, а также постоянной времени переходного процесса RCзаряда конденсатора.

В обеспечении работы ОУ в линейном режиме уровень входного сигнала, его длительность и величины параметров пассивных элементов схемы должны выбираться такими, чтобы максимальное напряжение на выходе интегратора не превышало напряжения насыщения
. В противном случае будет происходить искажение выходного сигнала, что иллюстрируется рис. 3.14 для уменьшенной величины RC.

Рисунок 3.14. Временные диаграммы,

иллюстрирующие формирование пилообразного импульса

на выходе интегратора при (RC ) " и его искажения при (RC ) ""

После окончания входного сигнала конденсатор C разряжается. Только после полного его разряда во избежание искажения интегрирования может быть подан очередной импульс входного сигнала. Для уменьшения времени разряда параллельно конденсатору обычно подключается транзисторный ключ, закорачивающийся цепь разряда после окончания входного сигнала.

Если в схеме рис. 3.13 поменять местами резистор и конденсатор, как показано на рис.3.15, то для узла «а» соотношение, аналогичное (3.21) будет иметь вид:

Следовательно, схема рис.3.15 осуществляет операцию дифференцирования. Устройство, на выходе которого напряжение пропорционально производной от напряжения на входе, называется дифференциатор.

Рисунок 3.15. Схема дифференциатора на ОУ

В прошлый раз я пытался вкратце объяснить основные принципы работы операционных усилителей. Но я просто не могу отказать в просьбе о продолжении темы. На этот раз схемы немного сложнее, но постараюсь не растягивать нудные математические выводы.
Интеграторы и дифференциаторы
Представьте, что Вам приходится считать интеграл напряжения. Страшно, не правда ли? И кому это вообще надо?
Так вот, для этих целей как раз и нужен интегратор .
В общем случае (для идеального операционника) рассматривается этот вариант:

Помните формулу заряда конденсатора?

Учитывая, что заряд будет изменяться по времени, можем смело предположить:

Далее… Неинвертирующий вход подключен на «землю». Напряжение на конденсаторе равняется противоположному напряжению на выходе, другими словами
. Это значит, что

Далее, решая и интегрируя, получаем (почти) финальную формулу:

Это, так сказать, в общем виде. В итоге, хочу обратить внимание на то, что напряжение на выходе играет существенную роль для каждого момента времени t. Его мы возьмем как свободный элемент:

Логично предположить, что интеграция идет по времени от t0 до t1

Вот Вам задачка. Конденсатор разряжен. Выходное напряжение равно нулю. Схема выключена. Конденсатор имеет емкость 1мкФ. Резистор 30кОм. Входное напряжение сначала равно -2В, затем 2В. Полярность меняется каждую секунду. Иными словами, на вход мы подали генератор импульсов.
Итак, решаем. Собираем быстренько схему в Протеусе. Рисуем график. Заносим в качестве функций входное и выходное напряжения. Нажимаем «Симулировать график». Получаем:


Вышел «пилообразный» сигнал. Обращаем внимание, что конденсатор влияет на резкость спада. Он должен колебаться в разумных пределах, чтоб успевать заряжаться/разряжаться, и чтоб не разряжаться/разряжаться * слишком быстро. Кстати, логично будет предположить, что сигнал усиливается в пределах питания нашего ОУ.

Далее, перейдем к дифференциаторам .
Тут не сложнее, чем в интеграторах.
Дифференциатор:


А вот и формула аналогового вычисления:

И снова скучные формулы…
Ток через конденсатор равен

Раз операционный усилитель близок к идеальному, то можно предположить, что ток через конденсатор равен току через резистор.
, а значит, если подставить значение тока, то получаем:

Как и в предыдущем примере, рассмотрим более практический пример. Конденсатор емкостью 50мкФ. Резистор 30кОм. На вход подаем «пилу». (Честно говоря, в протеусе не получилось сделать пилу стандартными средствами, пришлось прибегнуть к инструменту Pwlin.
Как результат, получаем график:

Подведем итоги.
Интегратор. «Прямоугольник» -> «Пила»
Дифференциатор. «Пила» -> «Прямоугольник»
P.S. Дифференциаторы и интеграторы будут рассмотрены позже в совершенно ином обличии.

Компараторы
Компаратор - это такое устройство, которое сравнивает два входных напряжения. Состояние на выходе меняется скачкообразно в зависимости от того, какое напряжение больше. Тут нет ничего особенного, просто приведу пример. На первый вход подаем постоянное напряжение, равное 3В. На второй вход - синусоидальный сигнал с амплитудой 4В. Снимаем напряжение с выхода.


График содержит исчерпывающую информацию, которая не нуждается в комментариях:

Логарифмический и экспоненциальный усилители
Для получения логарифмической характеристики необходим элемент ею обладающий. Для таких целей вполне подходит диод или транзистор. Дабы не усложнять, далее будем использовать диод.
Для начала, как обычно, приведу схему…


… и формулу:

Обращаем внимание, что е - это заряд электрона, Т - температура в Кельвинах и k - постоянная Больцмана.
Снова придется вспомнить курс физики. Ток через полупроводниковый диод можно описать как:
(изображение сделал немного больше, т.к. степень у формулы получалась «криво»)
Тут U - напряжение на диоде. I0 - ток утечки при малом обратном смещении. Прологарифмируем и получим:

Отсюда получаем напряжение на диоде (которое идентично напряжению на выходе):

Стоит сделать заметку, что при температуре 20 градусов Цельсия:

Проверим, как работает эта схема графически. Запустим протеус. Настроим входной сигнал:


Ток на диоде будет изменятся следующим образом:


Напряжение на выходе изменяется по логарифмическому закону:

Следующий пункт - экспоненциальный усилитель я оставлю без комментариев. Надеюсь, тут все будет понятно.

Вместо заключения

В этой части я старался свести математические выводы к минимуму, а сделать упор на практическое применение. Надеюсь, Вам понравилось:-)

*UPD.: Время заряда/разряда конденсатора определяется как: , где - это время переходного процесса. Для RC-цепи справедлива формула . За время Т конденсатор будет полностью заряжен/разряжен на 99%. Иногда для расчетов используют время 3

У интегратора форма выходного напряжения представляет собой интеграл от формы входного напряжения. Схема идеального интегратора на ОУ показана на рис. 54.

Согласно второму правилу ОУ i вх » i С. Ток конденсатора и напряжение на нем связаны соотношением

Поскольку согласно рис. 54

получаем

.

Согласно правилу 1 и и » и н. Поскольку и н = 0, получаем

, или .

Интегрируя обе части уравнения по времени, получаем

где В – постоянная интегрирования, т. е. начальное напряжение на конденсаторе (U C 0) в момент времени t = 0;

t = R 1 C – постоянная времени интегрирования.

Рис. 55

Таким образом, выходное напряжение интегратора (рис. 1) равно интегралу от входного напряжения и обратно пропорционально постоянной времени интегрирования.

Постоянное напряжение на выходе интегратора будет даже тогда, когда входное напряжение равно нулю. При отсутствии входного напряжения интегратор работает как усилитель без обратной связи, поскольку конденсатор препятствует протеканию тока от выхода к инверсному входу. Тем не менее, конденсатор все время заряжается малыми токами дрейфа и смещения, что приводит к усилению напряжения ошибки. Поэтому в схемах реальных интеграторов (рис. 55) параллельно конденсатору включают резистор (R2), который обеспечивает путь для протекания постоянного тока, что позволяет минимизировать напряжение ошибки. Кроме того, с помощью этого резистора ограничивается коэффициент усиления на низких частотах. Резистор R3 введен в схему для компенсации дрейфа ОУ.

Коэффициент передачи идеального интегратора (рис. 54) определяется как

,

т. е. он обратно пропорционален частоте (рис. 56).

Рис. 56 Рис. 57

Для реального интегратора (рис. 56) коэффициент передачи имеет вид

.

ЛАХ реального интегратора показана на рис. 57.

В реальном интеграторе на частотах, при которых реактивное сопротивление конденсатора Х С сравнимо с сопротивлением R 2 , общий импеданс обратной связи не будет преимущественно емкостным, что не даст точного интегрирования. В общем случае, точное интегрирование начинается на частотах, значительно превышающих частоту, при которой Х С = R 2 . Таким образом, для точного интегрирования необходимо выполнение условия

Определим критическую частоту, при которой Х С = R 2

Эта частота определяет частоту излома ЛАХ реального интегратора (рис. 57).

На частотах, меньших f 0 , когда коэффициент усиления постоянен и равен (–R 2 /R 1), схема не работает как интегратор. На частотах, превышающих f 0 , спад коэффициента усиления составляет 20 дБ/дек, т. е. схема работает как интегратор до частоты, при которой коэффициент передачи становится равным нулю.

Порядок расчета интегратора. Для расчета интегратора (рис. 55) необходимо задать:

† амплитуду входного напряжения (U вх max);

† частоту, с которой необходимо начать интегрировать входной сигнал (f );

† частоту (f 1), на которой амплитуда входного сигнала должна быть ослаблена до заданного уровня (U f 1 max).

Расчет производится в следующем порядке.

² Выбираем емкость конденсатора С в диапазоне (0,01…1) мкФ.

² Выбираем критическую частоту f 0 на одну декаду ниже f .

² Находим сопротивление резистора R2

.

² Определяем сопротивление резистора R1 таким, чтобы на частоте f 1

.

На частоте f 1 (во много раз большей f 0) влиянием резистора R2 можно пренебречь. Поэтому в этом случае применимо выражение для определения коэффициента передачи идеального интегратора

,

.

Порядок выполнения работы

1. Получить задание на расчет интегратора– значения U вх max , f , f 1 и U f 1 max .

2. Подобрать емкость конденсатора С в диапазоне (0.01...1 мкФ).

а б
Рис. 62

4. Собрать схему интегратора (рис. 63). Ко входу интегратора подключить генератор синусоидальных сигналов (ЗГ). Установить частоту ЗГ 20 Гц. Включить питание стенда. Установить на выходе интегратора напряжение максимальной амплитуды без искажений. Изменяя частоту ЗГ от 20 Гц до 220 кГц и поддерживая постоянной амплитуду входного напряжения (U вх), снять ЛАХ интегратора. Результаты занести в таблицу 5. Отключить питание стенда. По данным из таблицы 5 построить ЛАХ интегратора и зависимость и вых = j(f ).




Top