Передача списка в функцию python. Функции в программировании

Начав писать главу про ООП, понял что совсем забыл освятить такой большой и нужный раздел Пайтона как функции. Тема это большая и обширная, потому, чтобы не сильно растягивать паузу между уроками, решил разделить ее на 2 части. Сначала расскажу основы, потом уже углубленные особенности Пайтоновского функциестроения.

Функции в Пайтоне объявляются не просто, а очень просто. Вот пример самой простой:

Def empty_func(): pass
Начинается объявление с ключевого слова def, что как не сложно догадаться является сокращением от define. После него идет имя функции. После имени в круглых скобках задается список параметров, в данном случае отсутствующих.
Тело функции пишется с отступом со следующей строки. учтите, что в Пайтоне функции с пустым телом запрещены, потому в качестве тела приведенной выше функции используется «пустой оператор» pass.
Теперь рассмотрим пример посерьезнее.

Def safe_div(x, y): """Do a safe division:-) for fun and profit""" if y != 0: z = x / y print z return z else: print "Yippie-kay-yay, motherf___er!"
В этом примере есть несколько нововведений. первое, что бросается в глаза - это строка документации (docstring), идущая сразу после тела функции.
Обычно эта строка занимает не одну строку исходного текста (простите за каламбур) и потому задается в тройных кавычках. Она предназначена для описания функции, ее предназначения, параметров и т.п. Все хорошие ИДЕ умеют с этой строкой работать. Получить к ней доступ можно и из самой программы, используя свойство __doc__:

Print safe_div.__doc__
Этим свойством (да, да, именно свойством, в Пайтоне даже функции на самом деле - классы) удобно пользоваться во время сеансов работы интерактивной консоли.
>>> from ftplib import FTP >>> print FTP.__doc__ An FTP client class. To create a connection, call the class using these argument: host, user, passwd, acct These are all strings, and have default value "". Then use self.connect() with optional host and port argument. # дальнейшее почикано мною:-)
Вернемся к нашей исходной функции. Суть ее очень проста, она принимает 2 параметра: х и у. Если у не равен 0, она делит х на у, выводит результат на экран и возвращает свое частное в виде результата. Результат функции возвращают с помощью команды return. Благодаря механизму кортежей, описанному в прошлом уроке, функции в Пайтоне могут возвращать одновременно множество объектов.
Если же делитель все-таки равен нулю, функция выводит сообщение об ошибке. Неверно было бы предположить что в этом случае функция ничего не вернет. Правильнее будет сказать что функция вернет «ничего»:) Иначе говоря, если в функции отсутствует оператор return, или же он вызван без параметров, то функция возвращает специальное значение None. В этом легко убедиться вызвав что-то типа print safe_div(10, 0).

Вот пример слегка посложнее, он взят из доклада-презентации Гвидо ван Россума.

Def gcd(a, b): "Нахождение НОД" while a != 0: a,b = b%a,a # параллельное определение return b
Данная функция находит наибольший общий делитель двух чисел.

В общем, следует учитывать, что параметры в функции Пайтоном передаются по ссылке. Еще одним, возможно нетривиальным фактом к которому придется привыкать - является тот факт что сами функции являются значением, которое можно присваивать. Если воспользоваться нашей функцией safe_div для дальнейших экспериментов, то можно написать следующий код.

Mystic_function = safe_div print mystic_function(10, 4)
Вот на этот раз и все, «за бортом» осталось еще много аспектов определения функций в Пайтоне, которые будут освещены в следующий раз.

Упражнения для проверки.
1. На основе существующей функции нахождения НОД, напишите функцию поиска НОК двух чисел.
2. Напишите подпрограмму табулирования функции, переданной в качестве аргумента. Так же аргументами задается начальное, конечное значение и шаг табуляции.

PS кстати, каков оптимальный объем «урока»? Что лучше - реже выходящие большие главы, или «лучше меньше да чаще».

В языках программирования функции являются именованной частью кода. Это отдельные блоки в тексте программы. Определяются с помощью зарезервированного слова def. В Python к функциям можно обращаться неограниченное количество раз из любой части сценария.

Зачем нужны функции

Функции - это незаменимый инструмент программиста. С их помощью разработчик структурирует программу, делая ее понятней и компактнее. С помощью функций можно добиться многократного использования отдельной части кода без его повторного написания.

Это простейший способ упаковать логику выполнения отдельных частей программы. При этом сокращается объем и время, которое специалист тратит на создание сценария.

Как написать первую функцию

В Python 3 для начинающих свое знакомство с программированием есть самая простая функция print(). Чтобы увидеть ее в действии вам понадобится среда разработки. Для этого скачайте дистрибутив языка с официального сайта и установите Python на компьютер.

Откройте меню «Пуск» и в списке программ найдите Python 3. Разверните его щелчком левой клавиши. В открывшемся списке найдите среду IDLE и запустите ее. Наберите print(«Hello, World!») и нажмите «Ввод». Интерпретатор вернет результат вашей первой функции.

Некоторые программисты предпочитают работать в консоли. Если вы относитесь к их числу, нажмите win+R и введите команду python.exe. Откроется обычный интерпретатор, только с интерфейсом cmd. Наберите программу описанным выше образом и нажмите Enter в конце, чтобы увидеть результат.

Как использовать def

Новые функции создаются с помощью инструкции def. Они так же эффективны, как и встроенные print() или open(), но отличаются от функций в компилирующих языках. Python def относится к исполняемым инструкциям. Это означает, что функции не существует, пока интерпретатор ее не увидит, и не перейдет к ее исполнению.

Инструкция def создает новый объект и дает ему название. То есть когда интерпретатор приступает к реализации, он создает новый объект и связывает его с именем, указанным после def. Чтобы хранить данные к функциям можно прикреплять различные атрибуты.

Теперь давайте напишем функцию, возвращающую фразу «Hello, World!», только с использованием def:

  • >>> def здравствуй_мир():
  • print(«Hello, World!»)
  • >>> здравствуй_мир() #вызов функции
  • Hello, World!

Синтаксис функций и return

Инструкция def в Python состоит из заголовка и пишется по следующим правилам:

  • >>>def <имя>

После заголовка следует блок инструкций, который начинается с обязательного отступа. В IDLE интерпретатор сделает его автоматически. Но в блокноте или другом текстовом редакторе вы можете забыть нажать Tab. Тогда функция не запустится. Программный код в блоке инструкции называется телом функции и выполняется каждый раз при ее вызове.

Также в теле иногда находится return:

  • def <имя>(аргумент 1, аргумент 2, аргумент N):
  • return <значение>

Return завершает работу функции и передает вызывающей программе объект-результат. Инструкция не является обязательной. Функция будет работать без return, и завершится, когда поток управления достигнет конца ее тела.

Параметры и аргументы

Каждой функции можно передавать параметры, которые указываются в скобках после def. В Python они записываются как переменные, разделенные запятыми. Значения или ссылки на объекты этим именам присваиваются в блоке за двоеточием. После операции присвоения их принято называть аргументами, а не параметрами.

Аргументы внутри функции никак не связаны с объектами вне ее, поэтому в программировании их относят к локальным переменным. Область видимости ограничена блоком функции, который начинается с def и заканчивается return. Чтобы было понятнее, приведем пример:

  • x = 12 #присваиваем переменным ссылки на целочисленные объекты
  • y = 34
  • >>>def example(x,y): #создаем функцию с именем example
  • x = «Hello» #присваиваем значения аргументам x, y
  • y = «Python»
  • print(x, y, sep= «, »)
  • return None
  • >>>example(x, y) #вызываем функцию, не забыв указать параметры
  • Hello, Python
  • >>>print(x, y)
  • 12 34

Обратите внимание на предпоследнюю строчку кода. В интерпретаторе Python команда print() вернула переменные x и y из глобальной области видимости.

Значения аргументов не обязательно указывать внутри функции, можно их вписать вручную при ее вызове:

  • >>>def E_2(x, y):
  • return x + y
  • >>>E_2(«Hello, » «Python!») #чтобы слова были разделены, поставьте пробел перед закрывающей кавычкой
  • Hello, Python!
  • E_2(5, 4)

Как видно из примера с простой функцией E_2, результат полностью зависит от типа объектов x и y. В первом случае E_2 выполнила конкатенацию, а во втором - арифметическую операцию сложения. В этом заключается принцип полиморфизма и То, что объекты определяют синтаксический смысл, обуславливает гибкость и простоту языка. Не нужно тратить время на то, чтобы отдельно указать тип данных, с которым работает функция.

Правило LEGB

Это правило касается работы с переменными в разных областях видимости. По умолчанию все имена, которые вы создаете в теле функции, считаются локальными. А имена в модуле являются глобальными. При желании именам можно присвоить значение переменных верхнего уровня с помощью инструкции notlocal и global.

Правило LEGB объясняет схему разрешения имен:

  1. Как только интерпретатор находит переменную внутри инструкции def, он сначала выполняет поиск значений в локальной области видимости.
  2. Если поиск не дает результата, он переходит к области видимости любой всеобъемлющей инструкции def.
  3. Дальше интерпретатор двигается к глобальным именам в верхнем уровне модуля и тем, что обозначены как global.
  4. Если поиск не дает результатов, интерпретатор ищет имена во встроенной области видимости языка Python.

Рассмотрим наглядный пример:

  • >>>L = 85
  • >>>R = 23
  • >>>def пример_2(K):
  • R = 10
  • C = L + K+R
  • return C
  • >>>пример_2(5)

Переменные L и R находятся на верхнем уровне и являются глобальными именами. R, C и K - это локальные переменные, так как присваивание значения происходит внутри инструкции def.

Интерпретатор сначала выполняет операцию сложения для локальных R, C и K, игнорируя переменную R вне инструкции def. Потом ищет L, и не найдя ее среди имен local, переходит на верхний уровень.

Что такое lambda

Помимо def, в Python функции можно создавать с помощью специальных выражений, одно из которых - lambda. Свое оригинальное название получила в честь лямбда-исчислений языка LISP.

Как и def, lambda создает функцию, которую можно будет в дальнейшем вызвать, но не связывает ее с каким-нибудь именем. На практике lambda используют, когда нужно отложить выполнение фрагмента кода.

Основы лямбда-выражений

По внешнему виду lambda-выражения напоминают инструкции def. Вначале пишется ключевое слово lambda, потом аргументы, двоеточие и само выражение:

  • >>>f = lambda x, y, z: x + y + z
  • >>>f(2, 3, 4)

Тело лямбда представляет собой одно единственное выражение, а не блок инструкций. За счет этого lambda ограничена в возможностях и не настолько универсальна как def. В ней может быть реализована только логика, без циклов while или for.

Для лямбда действуют аналогичные с def правила поиска переменных. Имена, указанные вне выражения, являются глобальными, внутри - локальными, и они никак не влияют друг на друга.

Lambda-выражения очень удобно встраивать в программу. За счет небольшого размера они минимизируют и упрощают код. Но использование лямбда не является принципиальным. В Python 3 начинающим для работы будет достаточно инструкции def.

Функции являются отличным помощником во всех языках программирования. Они способствуют улучшению кода за счет выполнения ими повторных задании без нужны дублировать код для получения результата без использования функции. Код функции должен быть как можно более компактнее. Функция должна выполнять только одну операцию . Она должна выполнять ее хорошо и ничего другого она делать не должна. Чтобы создать читабельный код для вам и для других программистов вы должны следить за ним. Вы работаете с с чистым кодом, если каждая функция в основном делает то, что вы от нее ожидали. Половина усилий по реализации этого принципа сводится к выбору хороших имен для компактных функции, выполняющих одну операцию.

Чем меньше и специализированнее код функции, тем проще выбрать для нее понятное имя . Не бойтесь использовать длинные имена . Длинное содержательное имя лучше короткого невразумительного. Будьте последовательны в выборе имени. Используйте в имени функции те же словосочетания, глаголы и существительные, которые используются в ваших модулях. Создание функции производится с помощью инструкции def, как показано в следующем примере. Мы уже научились , давайте воспользуется знаниями тут.

# -*- coding: utf-8 -*- Phones = ["Nokia", "Samsung", "LG", "Sony"] def show_as_text(user_list): words = "" for value in user_list: words += str(value) + " " return words print "Phones: ", show_as_text(Phones) # Вернет: Phones: Nokia Samsung LG Sony

Достаточно простая структура функции. Название функции show_as_text, важно чтобы не совпадала с названием функции самого Python. Имя функции должна быть уникальна и по сравнению с переменными. Если функция будет иметь название get_values, и после нее в скрипте будет создана переменная с тем же именем, тогда вызов get_values(args) выдаст ошибку.

# -*- coding: utf-8 -*- def get_value(): return True a = 1 b = 3 get_value = "some text..." is_true = get_value()

Получим ошибку:

TypeError: "str" object is not callable Если потребуется вернуть из функции несколько значений, можно использовать кортеж. Создадим небольшой аналог игры Бинго! чтобы получить разные номера. # -*- coding: utf-8 -*- import random def bingo(): return (random.randint(0, 30), random.randint(0, 30), random.randint(0, 30)) Numbers = bingo() print "Первый: ", Numbers print "Второй: ", Numbers print "Третий: ", Numbers

Присвоить аргументу функции значение по умолчанию можно с помощью оператора присваивания.

Def connect(ip, port=8080): return str(ip) + " " + str(port) print connect("127.0.0.1") # Получим: 127.0.0.1 8080

Если в определении функции для каких-либо параметров указаны значения по умолчанию, при последующих вызовах функции эти параметры можно опустить. Если при вызове какой-то из этих не указан, он получит значение по умолчанию. Например:

Connect("сайт", 80)

также имеется возможность передавать функции именованные аргументы, которые при этом можно перечислять в произвольном порядке. Однако в этом случае вы должны знать, какие имена аргументов указаны в определении функции.

Connect(port=80, host="сайт")

Когда внутри функции создаются новые переменные, они имеют локальную область видимости. То есть такие переменные определены только в пределах тела функции, и они уничтожаются, когда функция возвращает управление программе. ЧТобы иметь возможность изменять глобальные переменные внтури функции, эти переменные следует определить в теле функции с помощью инструкции global.

Num = 1 # Глабальная перемення def next_number(): global num personal_num = 999 num += 1 return num print next_number() # результат 2 # Попробуем получить значении локальной переменной personal_num print personal_num # Ошибка NameError: name "personal_num" is not defined

Последнее обновление: 11.04.2018

Функции представляют блок кода, который выполняет определенную задачу и который можно повторно использовать в других частях программы. Формальное определение функции:

Def имя_функции ([параметры]): инструкции

Определение функции начинается с выражения def , которое состоит из имени функции, набора скобок с параметрами и двоеточия. Параметры в скобках необязательны. А со следующей строки идет блок инструкций, которые выполняет функция. Все инструкции функции имеют отступы от начала строки.

Например, определение простейшей функции:

Def say_hello(): print("Hello")

Функция называется say_hello . Она не имеет параметров и содержит одну единственную инструкцию, которая выводит на консоль строку "Hello".

Для вызова функции указывается имя функции, после которого в скобках идет передача значений для всех ее параметров. Например:

Def say_hello(): print("Hello") say_hello() say_hello() say_hello()

Здесь три раза подряд вызывается функция say_hello. В итоге мы получим следующий консольный вывод:

Hello Hello Hello

Теперь определим и используем функцию с параметрами:

Def say_hello(name): print("Hello,",name) say_hello("Tom") say_hello("Bob") say_hello("Alice")

Функция принимает параметр name, и при вызове функции мы можем передать вместо параметра какой-либо значение:

Hello, Tom Hello, Bob Hello, Alice

Значения по умолчанию

Некоторые параметры функции мы можем сделать необязательными, указав для них значения по умолчанию при определении функции. Например:

Def say_hello(name="Tom"): print("Hello,", name) say_hello() say_hello("Bob")

Здесь параметр name является необязательным. И если мы не передаем при вызове функции для него значение, то применяется значение по умолчанию, то есть строка "Tom".

Именованные параметры

При передаче значений функция сопоставляет их с параметрами в том порядке, в котором они передаются. Например, пусть есть следующая функция:

Def display_info(name, age): print("Name:", name, "\t", "Age:", age) display_info("Tom", 22)

При вызове функции первое значение "Tom" передается первому параметру - параметру name, второе значение - число 22 передается второму параметру - age. И так далее по порядку. Использование именованных параметров позволяет переопределить порядок передачи:

Def display_info(name, age): print("Name:", name, "\t", "Age:", age) display_info(age=22, name="Tom")

Именованные параметры предполагают указание имени параметра с присвоением ему значения при вызове функции.

Неопределенное количество параметров

С помощью символа звездочки можно определить неопределенное количество параметров:

Def sum(*params): result = 0 for n in params: result += n return result sumOfNumbers1 = sum(1, 2, 3, 4, 5) # 15 sumOfNumbers2 = sum(3, 4, 5, 6) # 18 print(sumOfNumbers1) print(sumOfNumbers2)

В данном случае функция sum принимает один параметр - *params , но звездочка перед названием параметра указывает, что фактически на место этого параметра мы можем передать неопределенное количество значений или набор значений. В самой функции с помощью цикла for можно пройтись по этому набору и произвести с переданными значениями различные действия. Например, в данном случае возвращается сумма чисел.

Возвращение результата

Функция может возвращать результат. Для этого в функции используется оператор return , после которого указывается возвращаемое значение:

Def exchange(usd_rate, money): result = round(money/usd_rate, 2) return result result1 = exchange(60, 30000) print(result1) result2 = exchange(56, 30000) print(result2) result3 = exchange(65, 30000) print(result3)

Поскольку функция возвращает значение, то мы можем присвоить это значение какой-либо переменной и затем использовать ее: result2 = exchange(56, 30000) .

В Python функция может возвращать сразу несколько значений:

Def create_default_user(): name = "Tom" age = 33 return name, age user_name, user_age = create_default_user() print("Name:", user_name, "\t Age:", user_age)

Здесь функция create_default_user возвращает два значения: name и age. При вызове функции эти значения по порядку присваиваются переменным user_name и user_age, и мы их можем использовать.

Функция main

В программе может быть определено множество функций. И чтобы всех их упорядочить, хорошей практикой считается добавление специальной функции main , в которой потом уже вызываются другие функции:

Def main(): say_hello("Tom") usd_rate = 56 money = 30000 result = exchange(usd_rate, money) print("К выдаче", result, "долларов") def say_hello(name): print("Hello,", name) def exchange(usd_rate, money): result = round(money/usd_rate, 2) return result # Вызов функции main main()

Существует большое количество публикаций, посвящённых реализациям концепций функционального программирования на языке Python, но большая часть этих материалов написана одним автором - Девидом Мертцом (David Mertz). Кроме того, многие из этих статей уже устарели и разнесены по различным сетевым ресурсам. В этой статье мы попробуем снова обратиться к этой теме, чтобы освежить и упорядочить доступную информацию, особенно учитывая большие различия, имеющиеся между версиями Python линии 2 и линии 3.

Функции в Python

Функции в Python определяются 2-мя способами: через определение def или через анонимное описание lambda . Оба этих способа определения доступны, в той или иной степени, и в некоторых других языках программирования. Особенностью Python является то, что функция является таким же именованным объектом, как и любой другой объект некоторого типа данных, скажем, как целочисленная переменная. В листинге 1 представлен простейший пример (файл func.py из архива python_functional.tgz

Листинг 1. Определения функций
#!/usr/bin/python # -*- coding: utf-8 -*- import sys def show(fun, arg): print("{} : {}".format(type(fun), fun)) print("arg={} => fun(arg)={}".format(arg, fun(arg))) if len(sys.argv) > 1: n = float(sys.argv[ 1 ]) else: n = float(input("число?: ")) def pow3(n): # 1-е определение функции return n * n * n show(pow3, n) pow3 = lambda n: n * n * n # 2-е определение функции с тем же именем show(pow3, n) show((lambda n: n * n * n), n) # 3-е, использование анонимного описание функции

При вызове всех трёх объектов-функций мы получим один и тот же результат:

$ python func.py 1.3 : arg=1.3 => fun(arg)=2.197 : at 0xb7662bc4> arg=1.3 => fun(arg)=2.197 : at 0xb7662844> arg=1.3 => fun(arg)=2.197

Ещё более отчётливо это проявляется в Python версии 3, в которой всё является классами (в том числе, и целочисленная переменная), а функции являются объектами программы, принадлежащими к классу function :

$ python3 func.py 1.3 : arg=1.3 => fun(arg)=2.1970000000000005 : at 0xb745432c> arg=1.3 => fun(arg)=2.1970000000000005 : at 0xb74542ec> arg=1.3 => fun(arg)=2.1970000000000005

Примечание . Существуют ещё 2 типа объектов, допускающих функциональный вызов - функциональный метод класса и функтор, о которых мы поговорим позже.

Если функциональные объекты Python являются такими же объектами, как и другие объекты данных, значит, с ними можно и делать всё то, что можно делать с любыми данными:

  • динамически изменять в ходе выполнения;
  • встраивать в более сложные структуры данных (коллекции);
  • передавать в качестве параметров и возвращаемых значений и т.д.

На этом (манипуляции с функциональными объектами как с объектами данных) и базируется функциональное программирование. Python, конечно, не является настоящим языком функционального программирования, так, для полностью функционального программирования существуют специальные языки: Lisp, Planner, а из более свежих: Scala, Haskell. Ocaml, ... Но в Python можно "встраивать" приёмы функционального программирования в общий поток императивного (командного) кода, например, использовать методы, заимствованные из полноценных функциональных языков. Т.е. "сворачивать" отдельные фрагменты императивного кода (иногда достаточно большого объёма) в функциональные выражения.

Временами спрашивают: «В чём преимущества функционального стиля написания отдельных фрагментов для программиста?». Основным преимуществом функционального программирования является то, что после однократной отладки такого фрагмента в нём при последующем многократном использовании не возникнут ошибки за счёт побочных эффектов, связанных с присвоениями и конфликтом имён.

Достаточно часто при программировании на Python используют типичные конструкции из области функционального программирования, например:

print ([ (x,y) for x in (1, 2, 3, 4, 5) \ for y in (20, 15, 10) \ if x * y > 25 and x + y < 25 ])

В результате запуска получаем:

$ python funcp.py [(2,20), (2,15), (3,20), (3,15), (3,10), (4,20), (4,15), (4,10), (5,15), (5,10)]

Функции как объекты

Создавая объект функции оператором lambda , как было показано в листинге 1, можно привязать созданный функциональный объект к имени pow3 в точности так же, как можно было бы привязать к этому имени число 123 или строку "Hello!" . Этот пример подтверждает статус функций как объектов первого класса в Python. Функция в Python - это всего лишь ещё одно значение, с которым можно что-то сделать.

Наиболее частое действие, выполняемое с функциональными объектами первого класса, - это передача их во встроенные функции высшего порядка: map() , reduce() и filter() . Каждая из этих функций принимает объект функции в качестве своего первого аргумента.

  • map() применяет переданную функцию к каждому элементу в переданном списке (списках) и возвращает список результатов (той же размерности, что и входной);
  • reduce() применяет переданную функцию к каждому значению в списке и ко внутреннему накопителю результата, например, reduce(lambda n,m: n * m, range(1, 10)) означает 10! (факториал);
  • filter() применяет переданную функцию к каждому элементу списка и возвращает список тех элементов исходного списка, для которых переданная функция вернула значение истинности.

Комбинируя эти три функции, можно реализовать неожиданно широкий диапазон операций потока управления, не прибегая к императивным утверждениям, а используя лишь выражения в функциональном стиле, как показано в листинге 2 (файл funcH.py из архива python_functional.tgz

Листинг 2. Функции высших порядков Python
#!/usr/bin/python # -*- coding: utf-8 -*- import sys def input_arg(): global arg arg = (lambda: (len(sys.argv) > 1 and int(sys.argv[ 1 ])) or \ int(input("число?: ")))() return arg print("аргумент = {}".format(input_arg())) print(list(map(lambda x: x + 1, range(arg)))) print(list(filter(lambda x: x > 4, range(arg)))) import functools print("{}! = {}".format(arg, functools.reduce(lambda x, y: x * y, range(1, arg))))

Примечание. Этот код несколько усложнён по сравнению с предыдущим примером из-за следующих аспектов, связанных с совместимостью Python версий 2 и 3:

  • Функция reduce() , объявленная как встроенная в Python 2, в Python 3 была вынесена в модуль functools и её прямой вызов по имени вызовет исключение NameError , поэтому для корректной работы вызов должен быть оформлен как в примере или включать строку: from functools import *
  • Функции map() и filter() в Python 3 возвращают не список (что уже показывалось при обсуждении различий версий), а объекты-итераторы вида:

Для получения всего списка значений для них вызывается функция list() .

Поэтому такой код сможет работать в обеих версиях Python:

$ python3 funcH.py 7 аргумент = 7 7! = 720

Если переносимость кода между различными версиями не требуется, то подобные фрагменты можно исключить, что позволит несколько упростить код.

Рекурсия

В функциональном программировании рекурсия является основным механизмом, аналогично циклам в итеративном программировании.

В некоторых обсуждениях по Python неоднократно приходилось встречаться с заявлениями, что в Python глубина рекурсии ограничена "аппаратно", и поэтому некоторые действия реализовать невозможно в принципе. В интерпретаторе Python действительно по умолчанию установлено ограничение глубины рекурсии, равным 1000, но это численный параметр, который всегда можно переустановить, как показано в листинге 3 (полный код примера можно найти в файле fact2.py из архива python_functional.tgz

Листинг 3. Вычисление факториала с произвольной глубиной рекурсии
#!/usr/bin/python # -*- coding: utf-8 -*- import sys arg = lambda: (len(sys.argv) > 1 and int(sys.argv[ 1 ])) or \ int(input("число?: ")) factorial = lambda x: ((x == 1) and 1) or x * factorial(x - 1) n = arg() m = sys.getrecursionlimit() if n >= m - 1: sys.setrecursionlimit(n + 2) print("глубина рекурсии превышает установленную в системе {}, переустановлено в {}".\ format(m, sys.getrecursionlimit())) print("n={} => n!={}".format(n, factorial(n))) if sys.getrecursionlimit() > m: print("глубина рекурсии восстановлена в {}".format(m)) sys.setrecursionlimit(m)

Вот как выглядит исполнение этого примера в Python 3 и в Python2 (правда на самом деле полученное число вряд ли поместится на один экран терминала консоли):

$ python3 fact2.py 1001 глубина рекурсии превышает установленную в системе 1000, переустановлено в 1003 n=1001 => n!=4027.................................................0000000000000 глубина рекурсии восстановлена в 1000

Несколько простейших примеров

Выполним несколько простейших трансформаций привычного императивного кода (командного, операторного) для превращения его отдельных фрагментов в функциональные. Сначала заменим операторы ветвления логическими условиями, которые за счёт "отложенных" (lazy, ленивых) вычислений позволяют управлять выполнением или невыполнением отдельных ветвей кода. Так, императивная конструкция:

if <условие>: <выражение 1> else: <выражение 2>

Полностью эквивалентна следующему функциональному фрагменту (за счёт "отложенных" возможностей логических операторов and и or ):

# функция без параметров: lambda: (<условие> and <выражение 1>) or (<выражение 2>)

В качестве примера снова используем вычисление факториала. В листинге 4 приведен функциональный код для вычисления факториала (файл fact1.py в архиве python_functional.tgz в разделе "Материалы для скачивания"):

Листинг 4. Операторное (императивное) определение факториала
#!/usr/bin/python # -*- coding: utf-8 -*- import sys def factorial(n): if n == 1: return 1 else: return n * factorial(n - 1) if len(sys.argv) > 1: n = int(sys.argv[ 1 ]) else: n = int(input("число?: ")) print("n={} => n!={}".format(n, factorial(n)))

Аргумент для вычисления извлекается из значения параметра командной строки (если он есть) или вводится с терминала. Первый вариант изменения, показанный выше, уже применяется в листинге 2, где на функциональные выражения были заменены:

  • определение функции факториала: factorial = lambda x: ((x == 1) and 1) or x * factorial(x - 1)
  • запрос на ввод значения аргумента с консоли терминала: arg = lambda: (len(sys.argv) > 1 and int(sys.argv[ 1 ])) or \ int(input("число?: ")) n = arg()

В файле fact3.py появляется ещё одно определение функции, сделанное через функцию высшего порядка reduсe() :

factorial = factorial = lambda z: reduce(lambda x, y: x * y, range(1, z + 1))

Здесь же мы упростим также и выражение для n , сведя его к однократному вызову анонимной (не именованной) функции:

n = (lambda: (len(sys.argv) > 1 and int(sys.argv[ 1 ])) or \ int(input("число?: ")))()

Наконец, можно заметить, что присвоение значения переменной n требуется только для её использования в вызове print() для вывода этого значения. Если мы откажемся и от этого ограничения, то всё приложение выродится в один функциональный оператор (см. файл fact4.py в архиве python_functional.tgz в разделе "Материалы для скачивания"):

from sys import * from functools import reduce print("вычисленный факториал = {}".format(\ (lambda z: reduce(lambda x, y: x * y, range(1, z + 1))) \ ((lambda: (len(argv) > 1 and int(argv[ 1 ])) or \ int(input("число?: ")))())))

Этот единственный вызов внутри функции print() и представляет всё приложение в его функциональном варианте:

$ python3 fact4.py число?: 5 вычисленный факториал = 120

Читается ли этот код (файл fact4.py) лучше, чем императивная запись (файл fact1.py)? Скорее нет, чем да. В чём же тогда его достоинство? В том, что при любых изменениях окружающего его кода, нормальная работа этого фрагмента сохранится, так как отсутствует риск побочных эффектов из-за изменения значений используемых переменных.

Функции высших порядков

При функциональном стиле программирования стандартной практикой является динамическая генерация функционального объекта в процессе исполнения кода, с его последующим вызовом в том же коде. Существует целый ряд областей, где подобная техника может оказаться полезной.

Замыкание

Одно из интересных понятий функционального программирования - это замыкания (closure). Эта идея оказалась настолько заманчивой для многих разработчиков, что была реализована даже в некоторых нефункциональных языках программирования (Perl). Девид Мертц приводит следующее определение замыкания: "Замыкание - это процедура вместе с привязанной к ней совокупностью данных" (в противовес объектам в объектном программировании, как: "данные вместе с привязанным к ним совокупностью процедур").

Смысл замыкания состоит в том, что определение функции "замораживает" окружающий её контекст на момент определения . Это может делаться различными способами, например, за счёт параметризации создания функции, как показано в листинге 5 (файл clos1.py в архиве python_functional.tgz в разделе "Материалы для скачивания"):

Листинг 5. Создание замыкания
# -*- coding: utf-8 -*- def multiplier(n): # multiplier возвращает функцию умножения на n def mul(k): return n * k return mul mul3 = multiplier(3) # mul3 - функция, умножающая на 3 print(mul3(3), mul3(5))

Вот как срабатывает такая динамически определённая функция:

$ python clos1.py (9, 15) $ python3 clos1.py 9 15

Другой способ создания замыкания - это использование значения параметра по умолчанию в точке определения функции, как показано в листинге 6 (файл clos3.py из архива python_functional.tgz в разделе "Материалы для скачивания"):

Листинг 6. Другой способ создания замыкания
n = 3 def mult(k, mul = n): return mul * k n = 7 print(mult(3)) n = 13 print(mult(5)) n = 10 mult = lambda k, mul=n: mul * k print(mult(3))

Никакие последующие присвоения значений параметру по умолчанию не приведут к изменению ранее определённой функции, но сама функция может быть переопределена:

$ python clos3.py 9 15 30

Частичное применение функции

Частичное применение функции предполагает на основе функции N переменных определение новой функции с меньшим числом переменных M < N , при этом остальные N - M переменных получают фиксированные "замороженные" значения (используется модуль functools ). Подобный пример будет рассмотрен ниже.

Функтор

Функтор - это не функция, а объект класса, в котором определён метод с именем __call__() . При этом, для экземпляра такого объекта может применяться вызов, точно так же, как это происходит для функций. В листинге 7 (файл part.py из архива python_functional.tgz в разделе "Материалы для скачивания") демонстрируется использование замыкания, частичного определения функции и функтора, приводящих к получению одного и того же результата.

Листинг 7. Сравнение замыкания, частичного определения и функтора
# -*- coding: utf-8 -*- def multiplier(n): # замыкания - closure def mul(k): return n * k return mul mul3 = multiplier(3) from functools import partial def mulPart(a, b): # частичное применение функции return a * b par3 = partial(mulPart, 3) class mulFunctor: # эквивалентный функтор def __init__(self, val1): self.val1 = val1 def __call__(self, val2): return self.val1 * val2 fun3 = mulFunctor(3) print("{} . {} . {}".format(mul3(5), par3(5), fun3(5)))

Вызов всех трёх конструкций для аргумента, равного 5, приведёт к получению одинакового результата, хотя при этом и будут использоваться абсолютно разные механизмы:

$ python part.py 15 . 15 . 15

Карринг

Карринг (или каррирование, curring) - преобразование функции от многих переменных в функцию, берущую свои аргументы по одному.

Примечание . Это преобразование было введено М. Шейнфинкелем и Г. Фреге и получило своё название в честь математика Хаскелла Карри, в честь которого также назван и язык программирования Haskell.

Карринг не относится к уникальным особенностям функционального программирования, так карринговое преобразование может быть записано, например, и на языках Perl или C++. Оператор каррирования даже встроен в некоторые языки программирования (ML, Haskell), что позволяет многоместные функции приводить к каррированному представлению. Но все языки, поддерживающие замыкания, позволяют записывать каррированные функции, и Python не является исключением в этом плане.

В листинге 8 представлен простейший пример с использованием карринга (файл curry1.py в архиве python_functional.tgz в разделе "Материалы для скачивания"):

Листинг 8. Карринг
# -*- coding: utf-8 -*- def spam(x, y): print("param1={}, param2={}".format(x, y)) spam1 = lambda x: lambda y: spam(x, y) def spam2(x) : def new_spam(y) : return spam(x, y) return new_spam spam1(2)(3) # карринг spam2(2)(3)

Вот как выглядят исполнение этих вызовов:

$ python curry1.py param1=2, param2=3 param1=2, param2=3

Заключение

В этой статье были представлены некоторые возможности языка Python, позволяющие применять его для написания программ, использующих стиль функционального программирования. Так, мы описали основные приёмы функционального программирования и показали примеры их реализации в Python. Как и в предыдущих статьях, примеры кода написаны таким образом, что могут успешно запускаться и исполняться в обеих версиях Python.

В следующей статье мы обсудим вопросы организации параллельного исполнения кода в среде Python.




Top