Пельтье как генератор электричества дома. Модуль пельтье как генератор электрической энергии

При помощи простых приспособлений можно использовать теплопотери от нагревания воздуха или жидкостей. В этой статье мы расскажем, как использовать бросовую энергию печей, котлов и открытого огня, преобразовав её в постоянный электрический ток небольшой силы.

Любой химический процесс проходит с выделением разного рода энергии. Такой мощный источник, как горение использовался во все времена. Его можно назвать первичным источником тепла и света. Горят практически все вещества на Земле, выделяя при этом тепло и свет в разных количествах. Преобразовать тепловую энергию в электрическую — дело несложное, если под рукой есть рабочая паротурбина, подобная тем, что установлены на ТЭЦ. Это громоздкое и сложное устройство, которому вряд ли найдётся место в котельной загородного дома. Мы попробуем извлечь пользу из выделения тепла при печном отоплении или нагревании воды.

Эффект Пельтье — это явление перепада температур при взаимодействии термопар двух различных типов проводников (p-типа и n-типа) при прохождении через них постоянного тока. Эффект Зеебека — следствие эффекта Пельтье, когда при нагревании одной из термопар образуется электрический ток. Мы не будем подробно описывать термодинамику процесса — эту сложную для восприятия информацию можно легко найти в справочной литературе. Нас интересует результат и варианты его практического использования.

Конструкция термоэлектрического модуля

Термоэлектрический модуль (ТЭМ) состоит из множества термопар, соединённых между собой медной пластиной. Поле термопар вклеивается между двух керамических пластин. Собрать такой модуль возможно только в заводских условиях. Но скомпоновать несколько ТЭМ для собственных нужд получится и дома. Элементы Пельтье-Зеебека имеются в свободной продаже в специализированных магазинах (и на сайтах) по продаже технологического оборудования .

Собираем ТЭМ на 5 В

Что понадобится:

  • модуль Пельтье TEC1-12705 (40x40) — 2 шт.;
  • повышающий преобразователь постоянного напряжения ЕК-1674;
  • лист дюралюминия толщиной 3 мм;
  • ёмкость для воды с идеально ровным дном (ковш);
  • термоклей;
  • паяльник.

Вырезаем из листа дюралюминия две одинаковые пластины, размерами чуть более двух модулей, лежащих рядом. Укрепляем термоклеем пластины на модулях с обеих сторон. Фиксируем (термоклеем) получившийся «сэндвич» на дно ковша. Такую конструкцию уже можно ставить на огонь, но мы получим на выходе бесполезные 1,5 В. Для улучшения характеристик нам и нужен повышающий преобразователь, который мы впаиваем в цепь. Он повысит напряжение до 5 В, а этого уже достаточно для зарядки мобильного телефона.

Внимание! Преобразователь имеет размеры 1,5х1,5 см. При отсутствии профессиональных навыков доверьте пайку специалисту.

Разность температур в нашей конструкции получается за счёт нагрева одной стороны (от печи или пламени) и охлаждения другой (вода в ковше). Разумеется, чем больше разница, тем эффективнее работа модуля. Поэтому, для работы в режиме микрогенератора понадобится сравнительно низкая температура воды в ковше (её лучше периодически заменять). Для выработки заветных 5 В достаточно поставить конструкцию на стакан с горящей свечой.

Пропорционально комбинируя большее количество модулей, мы получим более эффективную систему выработки энергии. Соответственно, увеличивая конструкцию, пропорционально увеличиваем теплообменник. При этом охлаждаемая поверхность должна быть полностью покрыта ёмкостью с водой (самый простой и доступный вариант).

Всё так просто, что сразу возникает желание собрать побольше модулей в одну систему и вырабатывать 220 В из костра. А потом подключить масляный обогреватель или кондиционер. Такая простая система имеет свои недостатки, и главный из них — низкий КПД. Обычно этот показатель не превышает 5%. Это обуславливает сравнительно малую силу тока 0,5 — 0,8 А и очень малую мощность — до 4 Вт.

Для насоса или лампы накаливания это ничтожно мало, но вполне достаточно для:

  • зарядки аккумуляторов вплоть до мотоциклетных (в вариантах, пропорциональных требованиям);
  • работы светодиодных (LED) ламп;
  • радиоприёмника.

В зимнее время система, помещённая на источник тепла, находящийся на улице, будет работать максимально эффективно.

Затраты на материалы для сборки термоэлектрического микрогенератора на 5 В:

*- данная модель элемента выбрана из соображений цены. Ассортимент ТЭМ у фирм-поставщиков довольно широк, что позволяет подобрать более производительные (до 8 В) модели (они ощутимо дороже).

Заводские изделия подобной конструкции только начинают появляться в продаже. Серийное производство ведётся мелкими партиями, да и ассортимент невелик. Стоимость такого «ковшика» стартует с 2500 руб.

Заводской термогенератор — устройство, основанное на эффекте Пельтье-Зеебека, которое можно закрепить прямо на разогретую поверхность. От конструкции, описанной выше, его отличает заводское исполнение (а значит, надёжность), отсутствие жидкостного теплообменника (вместо него — рёбра для воздушного охлаждения) и более высокая цена.

Стандартный «походный» термогенератор имеет следующие характеристики:

Как видно из таблицы, заводская надёжность и утилитарность обходится недёшево. При этом нельзя сказать, что он функционально превосходит самодельный вариант с ковшом. Впечатляющие 13,5 В ускорят зарядку мобильника, но для этого будет нужно носить с собой 2 кг веса в походе, а это непозволительная роскошь (с учётом размеров прибора). Ну и, конечно, цена заставляет задуматься. На эту сумму можно собрать уже не «термоковшик», а «термокастрюлю» и спокойно заряжать ноутбук. И ещё один нюанс — прибор всё равно требует закрепления на металлической пластине в случае использования открытого огня.

В целом это приятное и удобное дополнение для тех, у кого нет проблем с деньгами и свободным местом в багажнике.

Энергопечь

На сегодняшний день энергопечь — апофеоз применения ТЭМ в быту. Это заводское изделие, по сути дела топка-«буржуйка», для любого вида твёрдого топлива с интегрированным теплоэлектрическим модулем. Идеальный вариант для охотничьих домиков, дач, отдалённых зимовок и вообще любого вида жизни вдали от цивилизации. Рассчитана на автономное использование (без периферических теплоотводов), имеет только очаг и дымоход. Предусматривает приготовление пищи. На эту печь устанавливают самые мощные элементы Пельтье-Зеебека.

Характеристики энергопечей:

Хотя печь и переносная, безусловно, это «супертяжёлая весовая категория» среди бытовых приборов. Однако и спектр задач у энергопечи довольно широк — она может заряжать даже автомобильные аккумуляторы, освещать LED лампами целые комнаты. Ей найдётся место в экспедиционном обозе и в охотничьем вездеходе, в техническом помещении и на даче. Иными словами, в этом случае источник тепла у нас всегда с собой, осталось найти топливо.

В своей нише энергопечь незаменима, хотя и немного настораживает заявленный производителем срок службы — 10 лет. Следует отметить, что, как и в термогенераторе, есть возможность профилактической (или аварийной) замены всех деталей вплоть до корпуса.

Термоэлектрические модули — крайне занятные объекты. Помимо описанных методов применения их также используют для кондиционирования воды и воздуха. При этом на такой же элемент подаётся постоянный ток и он работает «в обратную сторону» — охлаждает воздух. Эта технология с успехом применяется в автомобильных кондиционерах и кулерах для воды, в автомобилестроении и при производстве микропроцессоров. Мы опишем эти устройства в следующей статье .

Виталий Долбинов, рмнт.ру

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта. На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом. При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор . Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество. При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах. Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-400 0 С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Проверить ТЭГ можно, если наложить внутрь топки тонких веточек и поджечь их. Через несколько минут можно подключать телефон, для подзарядки которого требуется разница температуры сторон модуля 100 0 С. На рисунке ниже изображён генератор в сборке.

Термоэлектрогенератор в сборке, изготовленный своими руками

При использовании ТЭГ необходимо соблюдать полярность подключения модулей.

Видео. Термоэлектрический генератор

Эффект «Пельтье» позволяет создать небольшие генераторы и холодильники, работающие без подвижных частей. Повышение качества модулей и снижение энергопотребления мобильных устройств позволяет создать своими руками термоэлектрогенератор для зарядки аккумуляторов и снабжения небольшим количеством энергией различные устройства, где КПД не имеет особого значения.

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Здравствуйте, меня зовут Данил, и я параноик. Паранойя моя заключается в том, что я убежден в неминуемом приходе Большого Песца. В каком обличье этот самый песец придет, не важно – если останемся в живых, то, скорее всего, придется начинать жить с нуля. А жить гораздо веселее, когда у тебя есть, от чего зарядить аккумуляторы в фонарике и дозиметре. Тех, кто считает так же (а также и всех любопытствующих), прошу под кат (осторожно, тяжелые фотки).

Исследовательская часть

Собственно, почему элемент Пельтье? Гораздо логичнее приобрести фонарик с мышечным приводом («жужелицу»), солнечными батареями, или, на худой конец, построить ветряк. Раньше я тоже думал, что вполне можно обойтись «жужелицей». Но в ней очень много движущихся деталей, которые сделаны дядюшкой Ляо из дешевого пластика. Первая поломка в условиях Большого Песца – и ты остаешься без электричества.

Хорошо, спросите вы, почему не солнечные батареи? Там нет движущихся частей. Согласен, отвечу я, но в условиях ядерной или вулканической зимы или под двухметровым бетонным перекрытием убежища солнышко не так-то легко поймать.

Ветряк? А какой площади должны быть его лопасти для того, чтобы он мог крутиться даже от слабого ветра? Движущиеся детали, опять же. Ветряк годится для стационарной установки при оборудовании долговременного укрытия.

Обмозговав эти доводы, я приуныл. Но вскоре случайно наткнулся на сайт nepropadu.ru (никакой рекламы, исключительно ссылка на исходный материал). Я просидел на нем безвылазно двое суток, и в процессе наткнулся на прелюбопытную статью про печку-щепочницу из корпуса от компьютерного БП с элементом Пельтье на боку (ссылка в конце поста). В комментариях было много скептики, но автор писал, что спокойно заряжал телефон от подключенного китайского DC-DC преобразователя… Я загорелся.

Конструкторская часть

Для начала я заказал у китайцев на e-Bay такой же элемент Пельтье (на эксперименты хватит). Обошелся он мне в 320 рублей. Что порадовало, так это ускоренная, с отслеживанием, но бесплатная доставка. Плюс товар отправили буквально через час после оплаты (а дело было в воскресенье).

Пока элемент Пельтье ехал, я продумал конструкцию будущего термоэлектрического генератора, нашел подходящий радиатор с вентилятором (прекрасно подошел древний процессорный радиатор), а также откопал на просторах Интернета схему DC-DC преобразователя с максимальным выходным током 1 ампер при напряжении 5 вольт.

Делать печку-щепочницу по примеру из той статьи я посчитал не целесообразным. Металл, из которого делают компьютерное железо, очень мягкий, от воздействия высоких температур его «поведет», да и прогорит он быстро. Поэтому было решено сделать «съемный вариант» генератора, который можно было бы закрепить на боку стационарной печки или прислонить к стоящему на костре котелку. А чтобы в таких условиях не поджарить элемент Пельтье на открытом огне, нужна была термостойкая, но теплопроводящая прокладка. Для этого мне удалось раздобыть кусок толстой алюминиевой пластины размерами 100х120х5 миллиметров.

Чтобы прижать элемент Пельтье к алюминиевой подложке, а к нему, в свою очередь, прижать радиатор, я решил использовать детский металлический конструктор, который я когда-то покупал для нужд робототехники.


Но вот элемент Пельтье приехал, и настало время для сборки.

Технологическая часть

У нас был радиатор, алюминиевая пластина, элемент Пельтье, горстка радиодеталей, кусок фольгированного текстолита и самые разные винтики и гайки. Дальше не помню.

Итак, все компоненты собраны, можно приступать к сборке.


Прошу прощения за размеченную и просверленную в двух местах пластину – до меня только после дошло, что неплохо бы фотографировать весь процесс сборки с самого начала.

Первая неприятность, которая меня подстерегала – это 12-вольтовый штатный вентилятор на радиаторе. Так как я собираюсь добывать всего 5 вольт, да еще и при довольно небольшом максимальном токе, то это могло создать проблему.

Сначала я закинул удочки во все радио- и компьютерные магазины Перми, однако нигде не нашлось вентилятора 80х80 миллиметров на 5 вольт. А если и были, то меньших размеров и на ток более 200 мА, что было слишком много.

Затем я покопался на Ибее и обнаружил, что нужный мне вентилятор стоит от 300 рублей. Но надеяться на скорую доставку было бессмысленно, и поэтому я оставил этот вариант как резервный.

И только после всех поисков я догадался включить штатный 12-вольтовый вентилятор к 5-вольтовому источнику напряжения. Оказалось, что он вполне неплохо дует, и при этом потребляет не очень большой ток. Поэтому я решил пока оставить его, а после проведения испытаний при необходимости заказать вентилятор на Ибее.


Я разметил алюминиевую пластину и просверлил в ней два отверстия для крепления радиатора и два – для платы преобразователя напряжения. Отверстия я сделал диаметром 4 миллиметра (под винты из конструктора), а с внешней стороны расширил их до 7,5 миллиметров, чтобы скрыть шляпки винтов. После этого я скруглил напильником острые углы и прошелся крупной наждачкой по всем поверхностям пластины, и мелкой – по месту прижатия элемента Пельтье.


На этом обработку подложки я посчитал завершенной и приступил к изготовлению преобразователя напряжения.
Импульсный повышающий преобразователь напряжения собран на ИМС L6920, которая начинает работать при входном напряжении 0,8 вольт и позволяет снять со своего выхода фиксированное напряжение 3,3 или 5 вольт, или изменяемое от 1,8 до 5,5 вольт.

Принципиальная схема преобразователя является типовой и взята из даташита.


Для получения 5 вольт на выходе схемы ножка 1 соединена с общим проводом. Также настроена выдача низкого уровня на ножке 3 при падении входного напряжения ниже 1,5 вольт.

Для схемы была разведена печатная плата, на которой предусмотрено крепление к основанию-подложке с помощью все тех же деталей от детского конструктора. За перегрев платы я не беспокоюсь, так как она имеет принудительное охлаждение потоком воздуха, выдуваемым из радиатора.


Пришлось повозиться с макросом корпуса, в котором была купленная мной микросхема. На сайте магазина значилось, что она в корпусе SSOP-8. Как оказалось, в стандартном наборе макросов Sprint Layout нет такого корпуса. Я нашел чертеж корпуса SSOP-8 и сделал макрос, после чего развел плату. После пробной печати выяснилось, что микросхема несколько шире, и на свои контактные площадки не помещается. Гугление конкретной модели микросхемы (L6920D) привело меня на сайт Чип-Дипа, где я узнал, что ИМС с индексом D изготавливается в корпусе TSSOP-8. Почесав затылок, я нашел чертеж этого корпуса, создал макрос и переразвел плату. Теперь все оказалось правильно.

Плата изготовлена при помощи ЛУТа и собрана. Оказалось, что корпус TSSOP-8 паять без фена очень неудобно. Но мы люди тертые, FTDI-микросхемы с шагом ножек 0,4 миллиметра паяли.


Теперь можно заняться установкой элемента Пельтье и радиатора. Подложку и радиатор в местах контакта с элементом я намазал термопастой. Затем стянул получившийся «бутерброд» гайками.


Оказалось, что плата преобразователя не влезает, упирается входным разъемом в радиатор, слегка не рассчитал. Перевернул крепежные скобы, плату вывесил наружу, а для защиты элементов от механических повреждений добавил еще две скобы. Вот что в итоге получилось:


Теперь можно проверить работоспособность генератора. Я нагревал его на газовой горелке. Вентилятор решил пока не ставить.

Для начала оказалось, что я перепутал полярность подключения элемента к преобразователю. Хотя вроде бы все было правильно – черный провод – к минусу, красный – к плюсу. Однако работать генератор не хотел. Тогда я изменил полярность подключения элемента.

Генератор заработал – сначала загорелись оба светодиода, сигнализируя о наличии 5 вольт на выходе и низком напряжении на входе, затем красный светодиод погас – напряжение поднялось выше полутора вольт.

К моему неудовольствию оказалось, что без вентилятора через пару минут работы системы радиатор ощутимо нагрелся. Так дело не пойдет.

На следующий день я прогулялся по металлорынку и нескольким компьютерным барахолкам, но на мой вопрос о 5-вольтовых вентиляторах везде разводили руками и советовали сходить «еще вон в то место», в котором я уже был пару минут назад. В итоге я поехал домой не солоно хлебавши.

Дома я провел эксперимент по запитке штатного 12-вольтового вентилятора от выходных 5 вольт преобразователя. Результаты меня не порадовали – преобразователь с явной неохотой погасил красный светодиод, а вентилятор несколько секунд слабо подергивался, пытаясь запуститься. Воздушного потока от работающего в полсилы вентилятора оказалось недостаточно для нормального охлаждения – радиатор так же быстро нагрелся, хоть и не обжигал теперь пальцы. В итоге вентилятор я решил все же заказать с Ибея.

Результат

Несмотря на низкий КПД элемента Пельтье в режиме генерации, промежуточный результат я все же получил – при подключении к выходу преобразователя портативного аккумулятора с заявленным током заряда 1000 мА генератор смог дать ток около 600 мА. Думаю, для зарядки большинства гаджетов в условиях Большого Песца этого тока вполне хватит.

По приезду вентилятора (Ибей обещает середину марта-начало апреля) проверю охлаждение. Плюс нужно будет протестировать работу генератора в «боевых» условиях – на костре.

За качество фотографий извиняюсь - фотограф из меня никакой. Ссылка на вдохновившую меня статью.

Экология познания. Элементы Пельтье это такие небольшие (обычно 4х4 см.) штуковины, состоящие из керамических пластин и биметалла между ними, посредством которого при нагревании одной

Речь пойдёт о темрогенераторе на элементах Пельтье.

Элементы Пельтье это такие небольшие (обычно 4х4 см.) штуковины, состоящие из керамических пластин и биметалла между ними, посредством которого при нагревании одной стороны и охлаждении другой – вырабатывается электрический ток. Или наоборот, подавая ток, нагреваем одну сторону и охлаждаем другую. Данное свойство элементов Пельтье используют при изготовлении переносных холодильников, но меня в первую очередь больше интересует генераторная способность этих устройств.

Действительно, очень удобно. Нагреваешь одну сторону элемента, охлаждаешь другую – и получаешь достаточный ток и напряжение для зарядки, например, сотового или прочих электронных девайсов. А у меня вообще с электричеством напряг, часто не бывает, так что такая штука мне жизненно необходима. Нет, конечно, частично, проблему нехватки электричества могут решить солнечные батареи. Это, на данном этапе, я вообще считаю один из лучших источников альтернативной энергетики. Поэтому у меня есть и солнечная батарея (о которой расскажу позже), небольшой, но достаточной для меня мощности. Выдаёт она где-то 1 – 1,5 ампера при напряжении от 5 до 15 вольт.

Но солнце есть не всегда, поэтому термогенератор оказался нужнее. Да и вне цивилизации он необходим, а также выживальщики, я думаю, такими вещами интересуются.

Для создания термогенератора подойдут не всякие элементы Пельтье, а лишь те, которые держат температуру 300-400 градусов. Конечно, можно изготовить генератор и из обычных элементов, тех, что применяют в холодильниках, но лишь в порядке эксперимента. Ибо, чуть только перегреете – и элемент выйдет из строя. Приобрести высокотемпературные элементы можно у американцев или у китайцев.

Можно приобрести элементы и у соотечественников, но уж совсем по баснословной цене, а это не наш путь.

Итак мой термогенератор нагревается масляной (на обычном, самом дешевом, подсолнечном масле) горелкой.

Которая помещена вот в такой разборный корпус, состоящий из консервной банки, регулятора высоты горелки и самого элемента Пельтье.

Сама горелка тоже состоит из банки и угольного фитиля.

Изготовить такой фитиль можно по этой видеоинструкции.

Лично я делаю такие фитили из углей от костра, продвинутые жители больших городов могут просто купить древесный уголь в магазине. Подобная горелка и сама по себе хороша, можно использовать как источник освещения, вместо свечек. Масло на её работу уходит мало, особо не чадит, может гореть сутками.

Вот это элемент Пельтье, сверху на него помещен радиатор от охлаждения компьютерного процессора, с вентилятором.

Это регулятор уровня огня горелки. Я его изготовил от убитого CD-rom_а. Его можно изготовить из чего угодно, лишь бы фантазия работала.

Элемент Пельтье (в данном варианте два-три элемента, друг на друге, всё смазано термопастой) у меня зажат между охлаждающим радиатором и нагревающим радиатором.

Пространство вокруг элемента я заполнил резиной (от каблуков ненужной обуви) и склеил всё это автомобильным термогерметиком.

Вентилятор для охлаждения изготовил из 3–х вольтового двигателя от того же неисправного CD-rom_а и лопастей штатного вентилятора от компьютерного кулера. Двигатель и вентилятор состыковал при помощи китайского суперклея и дискодержателя от всё того же CD-rom_а. В результате получился вентилятор охлаждения, который начинает работать от полутора вольт и жрёт совсем небольшой ток.

Для радиатора нагревания взял радиатор от кулера старого процессора.

Напряжение, порядка 6-8 вольт, у меня выходит на преобразователь, где уменьшается до нужных для девайсов пяти вольт.

Про этот преобразователь я уже писал. http://tutankanara.livejournal.com/410005.html

Вот и сам генератор в сборе. Кат только (в пределах минуты-две) вырабатываемое напряжение достигает полутора вольт, начинает крутиться вентилятор охлаждения, и холодная сторона элемента начинает охлаждаться. В рабочий режим генерации термогенератор выходит через несколько минут. От него можно питать светодиодные гирлянды и заряжать электронные девайсы. Мой генератор даёт порядка 400 миллиампер тока при 5 вольтах напряжения. Сила тока зависит от применяемого элемента. Если будет возможность, поставлю элементы получше.

Также данное устройство, если снять генераторную часть, можно использовать в качестве обычной горелки, для кипячения воды. Обычно я заполняю наполовину банку и она закипает через 10-15 минут. опубликовано




Top