Обучение нейронной сети. Алгоритм обратного распространения ошибок. Как работает нейронная сеть: алгоритмы, обучение, функции активации и потери

Самым важным свойством нейронных сетей является их способность обучаться на основе данных окружающей среды и в результате обучения повышать свою производительность. Повышение производительности происходит со временем в соответствии с определенными правилами. Обучение нейронной сети происходит посредством интерактивного процесса корректировки синаптических весов и порогов. В идеальном случае нейронная сеть получает знания об окружающей среде на каждой итерации процесса обучения.

С понятием обучения ассоциируется довольно много видов деятельности, поэтому сложно дать этому процессу однозначное определение. Более того, процесс обучения зависит от точки зрения на него. Именно это делает практически невозможным появление какого-либо точного определения этого понятия. Например, процесс обучения с точки зрения психолога в корне отличается от обучения с точки зрения школьного учителя. С позиций нейронной сети, вероятно, можно использовать следующее определение:

Обучение – это процесс, в котором свободные параметры нейронной сети настраиваются посредством моделирования среды, в которую эта сеть встроена. Тип обучения определяется способом подстройки этих параметров.

Это определение процесса обучения нейронной сети предполагает следующую последовательность событий:

  1. В нейронную сеть поступают стимулы из внешней среды.
  2. В результате первого пункта изменяются свободные параметры нейронной сети.
  3. После изменения внутренней структуры нейронная сеть отвечает на возбуждения уже иным образом.

Вышеуказанный список четких правил решения проблемы обучения нейронной сети называется алгоритмом обучения. Несложно догадаться, что не существует универсального алгоритма обучения, подходящего для всех архитектур нейронных сетей. Существует лишь набор средств, представленный множеством алгоритмов обучения, каждый из которых имеет свои достоинства. Алгоритмы обучения отличаются друг от друга способом настройки синаптических весов нейронов. Еще одной отличительной характеристикой является способ связи обучаемой нейронной сети с внешним миром. В этом контексте говорят о парадигме обучения, связанной с моделью окружающей среды, в которой функционирует данная нейронная сеть.

Существуют два концептуальных подхода к обучению нейронных сетей: обучение с учителем и обучение без учителя.

Обучение нейронной сети с учителем предполагает, что для каждого входного вектора из обучающего множества существует требуемое значение выходного вектора, называемого целевым. Эти вектора образуют обучающую пару. Веса сети изменяют до тех пор, пока для каждого входного вектора не будет получен приемлемый уровень отклонения выходного вектора от целевого.

Обучение нейронной сети без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Обучающее множество состоит лишь из входных векторов. Алгоритм обучения нейронной сети подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы.

СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ/2. Вычислительная техника и программирование

Золотухина Ирина Андреевна, магистрант

Костанайский государственный университет имени А. Байтурсынова, Казахстан.

Методы и алгоритмы обучения нейронных сетей.

Аннотация: в данной статье проведен анализ нейронных сетей, почему они настолько актуальны, рассмотрим разновидности нейросетевых алгоритмов, области применения сетей.

Ключевые слова: нейрон, перцептрон, метод Розенблатта, метод Хебба, ошибка обобщения, ошибка обучения, алгоритм обучения.

Нейронные сети (или искусственные нейронные сети) – это одно из интереснейших направлений исследований в области искусственного интеллекта, основанное на моделировании и воспроизведении нервной системы человека. Особенно ученых интересуют такие процессы как: способность нервной системы обучаться, исправлять ошибки, принимать решения, что должно позволить смоделировать работу человеческого мозга.

Искусственные нейронные сети обучаются путем анализа положительных и отрицательных воздействий. Они состоят из нейронов, которые названы так по аналогии с биологическим прототипом.

Впервые предложили модель искусственного нейрона американские ученые Уоррен Маккалок (Warren McCulloch) и его ученик Уолтер Питт (Walter Pitts) в 1943 году.

В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа:

· входные нейроны, на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур;

· промежуточные нейроны, составляющие основу нейронных сетей, преобразования в которых выполняются по выражениям (1) и (1.1);

· выходные нейроны, выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются также по выражениям (1) и (1.1).

Рис 1. Структура формальной нейронной сети

(1)

y = f(s) (1.1)

где

· w i , – вес (weight) синапса , i = 1...n ;

· b – значение смещения;

· s – результат суммирования;

· x , – компонент входного вектора (входной сигнал),

· x i = 1...n ;

· у – выходной сигнал нейрона;

· n – число входов нейрона;

· f – нелинейное преобразование (функция активации).

На входной сигнал (s) нелинейный преобразователь отвечает выходным сигналом f(s) , который представляет собой выход у нейрона.

Преимущества нейросетевого подхода при решении задач информационных технологий в отличие от других (например, архитектуры фон Неймана):

· параллелизм обработки информации;

· единый и эффективный принцип обучения;

· надежность функционирования;

· способность решать неформализованные задачи.

Применение и проблемы, решаемые искусственными нейронными сетями

Искусственные нейронные сети нашли своё применение в различных областях техники. Дальнейшее повышение производительности компьютеров все в большей мере связывают с развитием именно этих сетей, в частности, с нейрокомпьютерами, основу которых составляет искусственная нейронная сеть.

Круг задач, решаемых нейронными сетями:

· распознавания образов;

· распознавания и синтеза речи;

· распознавания аэрокосмических изображений;

· обработки сигналов при наличии больших шумов;

· прогнозирования;

· оптимизации;

· прогнозирования котировки ценных бумаг и курса валют;

· предупреждения мошенничества с кредитными карточками;

· игра на бирже;

· фильтрация спама;

· оценки стоимости недвижимости;

· оценки финансового состояния предприятий и риска невозврата кредитов;

· обработки радиолокационных сигналов;

· системы безопасности и видеонаблюдения;

· контроля движения на скоростных автомагистралях и железных дорогах;

· диагностики в медицине;

· управление сложными объектами;

· добычи знаний из больших объемов данных в бизнесе, финансах и научных исследованиях;

· управления в реальном времени и это далеко не всё.

Обучение

Под обучением понимается, повышение производительности системы путем анализа входных данных. Причем обучение проходит по определённым правилам.

Существуют два основных подхода к обучению: «с учителем» и «без учителя» (самообучение). При обучении с учителем нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Вместе они называются обучающей парой. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам, минимизировалась ошибка. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или зависимость между образцами в системе данных, что позволяет распределить образцы по категориям.

Обучение с учителем

На вход искусственной нейронной сети подается множество входных нейронов X - входной вектор для обучаемой нейронной сети.

Определим функцию ошибки E . Обычно это средняя квадратичная ошибка,

,

где

· P - количество обработанных нейронной сетью примеров;

· y i -выход;

· d i - желаемый (идеальный) выход нейронной сети.

Процедура обучения нейронной сети сводится к процедуре коррекции весов связей. Целью процедуры коррекции весов есть минимизация функции ошибки E .

Общая схема обучения с учителем:

1 Перед началом обучения весовые коэффициенты устанавливаются некоторым образом, на пример - случайно.

2 На первом этапе на вход в определенном порядке подаются учебные примеры. На каждой итерации вычисляется ошибка для учебного примера E L (ошибка обучения) и по определенному алгоритму производится коррекция весов. Целью процедуры коррекции весов есть минимизация ошибки E L .

3 На втором этапе обучения производится проверка правильности работы. На вход в определенном порядке подаются контрольные примеры. На каждой итерации вычисляется ошибка для контрольного примера E G (ошибка обобщения - ошибка, которую обучаемая модель показывает на примерах, не участвовавших в процессе обучения). Если результат неудовлетворительный то, производится модификация множества учебных примеров и повторение цикла обучения.

Если после нескольких итераций алгоритма обучения ошибка обучения E L падает почти до нуля, в то время как ошибка обобщения E G в начале спадает а затем начинает расти, то это признак эффекта переобучения. В этом случае обучение необходимо прекратить.

Рис 2. Эффект переобучения

На основе этого алгоритма строится обучение нейронной сети методом Розенблатта.

Метод Розенблатта

Данный метод был предложен Ф.Розенблаттом в 60-х годах XX века Для нейронной сети, названной персептрон (perceptron). Персептрон имеет пороговую функцию активации, его схема представлена на рис.1.

Рис 3. Однослойный персептрон

Процедуру обучения Розенблатта для однослойного персептрона можно представить так:

,

где

· x i - i -тый вход нейронной сети;

· d j - желаемый (идеальный) j -тый выход нейронной сети;

· a - коэффициент (скорость обучения) 0< a ≤1

Весовые коэффициенты меняются только в том случае, если реальное выходное значение не совпадает идеальным выходным значением. Ниже приведено описание алгоритма обучения персептрона.

1. Полагаем все веса равными нулю.

2. Проводим цикл предъявления примеров. Для каждого примера выполняется следующая процедура.

2.1. Если сеть выдала правильный ответ, то переходим к шагу 2.4.

2.2. Если на выходе персептрона ожидалась единица, а был получен ноль, то веса связей, по которым прошел единичный сигнал, уменьшаем на единицу.

2.3. Если на выходе персептрона ожидался ноль, а была получена единица, то веса связей, по которым прошел единичный сигнал, увеличиваем на единицу.

2.4. Переходим к следующему примеру. Если достигнут конец обучающего множества, то переходим к шагу 3, иначе возвращаемся на шаг 2.1.

3. Если в ходе выполнения второго шага алгоритма хоть один раз выполнялся шаг 2.2 или 2.3 и не произошло зацикливания, то переходим к шагу 2. В противном случае обучение завершено.

В этом алгоритме не предусмотрен механизм отслеживания зацикливания обучения. Этот механизм можно реализовывать по-разному. Наиболее экономный в смысле использования дополнительной памяти имеет следующий вид.

4. k =1; m =0. Запоминаем веса связей.

5. После цикла предъявлений образов сравниваем веса связей с запомненными. Если текущие веса совпали с запомненными, то произошло зацикливание. В противном случае переходим к шагу 3.

6. m =m +1. Если m <k , то переходим ко второму шагу.

7. k =2k ; m =0. Запоминаем веса связей и переходим к шагу 2.

Поскольку длина цикла конечна, то при достаточно большом k зацикливание будет обнаружено.

Обучение без учителя.

Главная черта, делающая обучение без учителя привлекательным, – это его "самостоятельность". Процесс обучения, как и в случае обучения с учителем, заключается в подстраивании весов синапсов. Некоторые алгоритмы, правда, изменяют и структуру сети, то есть количество нейронов и их взаимосвязи, но такие преобразования правильнее назвать более широким термином – самоорганизацией, и в рамках данной статьи они рассматриваться не будут. Очевидно, что подстройка синапсов может проводиться только на основании информации, доступной в нейроне, то есть его состояния и уже имеющихся весовых коэффициентов. Исходя из этого соображения и, что более важно, по аналогии с известными принципами самоорганизации нервных клеток, построены алгоритмы обучения Хебба.

По существу Хэбб предположил, что синаптическое соединение двух нейронов усиливается, если оба эти нейрона возбуждены. Это можно представить как усиление синапса в соответствии с корреляцией уровней возбужденных нейронов, соединяемых данным синапсом. По этой причине алгоритм обучения Хэбба иногда называется корреляционным алгоритмом.

Идея алгоритма выражается следующим равенством:

,

где

· y i (n-1) – выходное значение нейрона i слоя (n-1) ,

· y j (n) – выходное значение нейрона j слоя n ;

· w ij (t) и w ij (t-1 ) – весовой коэффициент синапса, соединяющего эти нейроны, на итерациях t и t-1 соответственно;

· a – коэффициент скорости обучения.

Существует также и дифференциальный метод обучения Хебба, представленный формулой

,(2)

здесь y i (n-1) (t) и y i (n-1) (t-1) – выходное значение нейрона i слоя n-1 соответственно на итерациях t и t-1;

y j (n) (t) и y j (n) (t-1) – то же самое для нейрона j слоя n .

Как видно из формулы (2), сильнее всего обучаются синапсы, соединяющие те нейроны, выходы которых наиболее динамично изменились в сторону увеличения.

Полный алгоритм обучения с применением вышеприведенных формул будет выглядеть так:

1. На стадии инициализации всем весовым коэффициентам присваиваются небольшие случайные значения.

2. На входы сети подается входной образ, и сигналы возбуждения распространяются по всем слоям согласно принципам классических прямопоточных (feedforward) сетей, то есть для каждого нейрона рассчитывается взвешенная сумма его входов, к которой затем применяется активационная (передаточная) функция нейрона, в результате чего получается его выходное значение y i (n) , i =0...M i -1, где M i – число нейронов в слое i ; n =0...N -1, а N – число слоев в сети.

3. На основании полученных выходных значений нейронов по формуле (1) или (2) производится изменение весовых коэффициентов.

4. Цикл с шага 2, пока выходные значения сети не застабилизируются с заданной точностью. Применение этого нового способа определения завершения обучения, отличного от использовавшегося для сети обратного распространения, обусловлено тем, что подстраиваемые значения синапсов фактически не ограничены.

На втором шаге цикла попеременно предъявляются все образы из входного набора.

Следует отметить, что вид откликов на каждый класс входных образов не известен заранее и будет представлять собой произвольное сочетание состояний нейронов выходного слоя, обусловленное случайным распределением весов на стадии инициализации. Вместе с тем, сеть способна обобщать схожие образы, относя их к одному классу. Тестирование обученной сети позволяет определить топологию классов в выходном слое. Для приведения откликов обученной сети к удобному представлению можно дополнить сеть одним слоем, который, например, по алгоритму обучения однослойного перцептрона необходимо заставить отображать выходные реакции сети в требуемые образы.

Необходимо отметить, что обучение без учителя гораздо более чувствительно к выбору оптимальных параметров, нежели обучение с учителем. Во-первых, его качество сильно зависит от начальных величин синапсов. Во-вторых, обучение критично к выбору радиуса обучения и скорости его изменения. И наконец, разумеется, очень важен характер изменения собственно коэффициента обучения. В связи с этим пользователю, скорее всего, потребуется провести предварительную работу по подбору оптимальных параметров обучения сети.

Несмотря на некоторые сложности реализации, алгоритмы обучения без учителя находят обширное и успешное применение. По сути дела, по алгоритму обучения без учителя функционируют и наиболее сложные из известных на сегодняшний день искусственные нейронные сети – когнитрон и неокогнитрон. Они очень хорошо справлялись с задачей распознавания изображений подвергнутых смещениям в позиции, зашумлению, искажению формы. Тем не менее, неокогнитрон не справлялся с задачей, когда изображение было повернуто на некоторый угол.

В заключение можно сказать, что в настоящее время ученые занимаются исследованием искусственных нейронных сетей, устойчивости тех или иных конфигураций, однако далеко не все задачи могут быть решены нейронными сетями. Несмотря на то, что искусственный нейрон является моделью биологического нейрона, он далеко не совершенен и требует значительной работы, новых открытий в области искусственного интеллекта. Нейронные сети не в состоянии обучаться, как человек. Тем не менее, на основе вышеизложенного материала можно создать реально действующие системы для распознавания образов, сжатия информации, автоматизированного управления, экспертных оценок и много другого.

Литература:

1. В.В.Круглов, В.В.Борисов «Искусственные нейронные сети», 2002 год.

2. Rumelhart D. E., Hinton G. E., Williams R. D. Learning internal reprentation by error propagation in parallel distributed processing. – Cambrige: MA: MIT Press, 1986. – 91 p.

Алгоритмы обучения нейронных сетей

На этапе обучения происходит вычисление синаптических коэффициентов в процессе решения нейронной сетью конкретных задач. Контролируемое обучение нейронной сети можно рассматривать как решение оптимизационной задачи. Ее целью является минимизация функций ошибок (невязок) на данном множестве примеров путем выбора значений весов W.

Известно два вида обучения: с учителем и без учителя. Обучение с учителем предполагает предъявление сети последовательности обучающих пар (X i , D i), где X i – обучающий пример, D i – эталон, который должен быть получен на выходе сети. Для каждого X i вычисляется y i , который сравнивается с D i . Разница используется для корректировки синаптической матрицы. Обучение без учителя предполагает наличие только обучающих примеров X i . Синаптическая матрица настраивается так, чтобы близким входным векторам соответствовали одинаковые результирующие векторы.

Процесс обучения можно рассматривать как дискретный процесс, описываемый конечно-разностными уравнениями. Большинство методов обучения используют идею Хэбба, смысл которой заключается в повторении заучиваемого примера. Синаптический вес увеличивается если два нейрона – источник и приемник – активизированы. Наращивание веса определяется произведением уровней возбуждения двух нейронов, что можно записать так:

где – значения веса связи от i-го нейрона к j-му на предыдущей итерации обучения и текущей;

– скорость обучения ();

– выход нейрона i, являющийся входом для j-го нейрона на 0-й итерации;

– выход нейрона jна 0-й итерации.

Процесс обучения нейронной сети рассматривается как задача минимизации некоторой функции F(W) min, где W– синаптическая матрица сети.

Для решения такой задачи могут использоваться различные методы нелинейного программирования: градиентный, квазиньютоновский случайный поиск и др.

Общим для методов обучения сети является следующее: для некоторого начального состояния синаптической матрицы определяется направление уменьшения целевой функции F(W) и находится ее минимум в этом направлении. Для полученной точки опять вычисляется направление убывания функции и осуществляется одномерная оптимизация. В общем алгоритм можно представить как

где - величина шага на этапе 0;

Направление поиска на этапе 0.

Наиболее развитым методом обучения является алгоритм обратного распространения. Каких-либо ограничений на количество слоев и топологию сети не накладывается. Единственное требование состоит в том, чтобы функция возбуждения была всюду дифференцируема. Как правило, используется сигмоидная (логистическая) функция. Алгоритм обратного распространения является методом обучения с учителем (рис. 6.5).

Рис. 6.5. Схема обучения нейронной сети с учителем

Алгоритм обратного распространения представляет собой развитие обобщенного дельта-правила и является алгоритмом градиентного спуска, минимизирующим суммарную квадратичную ошибку. Главная цель состоит в том, чтобы вычислить чувствительность ошибки сети к изменению весов.

Пусть нейронная сеть соответствует схеме на рис. 6.2. Тогда алгоритм обучения можно описать :

1. Задать синаптические матрицы W, W * .

2. Для каждой обучающей пары (X i , D i) выполнить действия:

подать на вход скрытого слоя очередной набор обучающих данных ;

вычислить выход скрытого слоя :

;

вычислить выход выходного слоя:

.

между полученными выходными величинами сети и эталонными величинами;

для нейронов скрытого слоя.

Повторять шаги 2 и 3 до тех пор, пока ошибки не станут приемлемыми.

Пример 6.3. Пусть нейронная сеть соответствует схеме на рис. 6.2. При этом n=2, m=2,k=1 (рис. 6.6). Обучающее множество =(1;2), D=3. Необходимо обучить нейронную сеть складывать цифры 1 и 2. Все нейроны возбуждаются сигмоидной функцией. Заданы синаптические матрицы для скрытого слоя на первой итерации:

и вектор для выходного слоя

Рис. 6.6. Нейросеть с одним скрытым слоем

Вычислим взвешенную сумму

Взвешенный вход для выходного слоя

В то же время желаемое значение y (1) , преобразованное функцией возбуждения

D = F(3) = 0,952.

Поэтому среднеквадратическая ошибка (СКО):

Значения фактического выхода и желаемого не совпадают, поэтому синаптические веса следует изменить. Для этого следует выяснить, каким образом повлияют эти изменения на величину ошибки. Анализ, согласно алгоритму обратного распространения, выполняют начиная с выходного слоя сети и продвигаясь к входу:

1) прежде всего выясняют, как влияют на ошибку сети изменения на выходе. Для этого достаточно определить скорость изменения ошибки при данном значении выхода. Скорость определяется с помощью производной. Дифференцирование выполняется по аргументу y (1) .

Полученная реакция скорости изменения ошибки при данном значении выхода отрицательная, что указывает на необходимость увеличения значения на выходе;

2) определить, каким образом влияет на ошибку сети каждый из
входов выходного слоя. Для этого определим скорость изменения ошибки сети при изменении средневзвешенного входа выходного слоя V * (1) :

Значение EQпоказывает, что скорость изменения ошибки в
процессе изменения средневзвешенного входа выходного нейрона существенно ниже по сравнению со скоростью реакции сети на изменение ее выхода.

внутренних параметров под конкретную задачу.

Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами.

Эпоха - одна итерация в процессе обучения, включающая предъявление всех примеров из обучающего множества и, возможно, проверку качества обучения на контрольном множестве.

Процесс обучения осуществляется на обучающей выборке.

Обучающая выборка включает входные значения и соответствующие им выходные значения набора данных. В ходе обучения нейронная сеть находит некие зависимости выходных полей от входных.

Таким образом, перед нами ставится вопрос - какие входные поля (признаки) нам необходимо использовать. Первоначально выбор осуществляется эвристически, далее количество входов может быть изменено.

Сложность может вызвать вопрос о количестве наблюдений в наборе данных. И хотя существуют некие правила, описывающие связь между необходимым количеством наблюдений и размером сети, их верность не доказана.

Количество необходимых наблюдений зависит от сложности решаемой задачи. При увеличении количества признаков количество наблюдений возрастает нелинейно, эта проблема носит название "проклятие размерности". При недостаточном количестве данных рекомендуется использовать линейную модель .

Аналитик должен определить количество слоев в сети и количество нейронов в каждом слое .

Далее необходимо назначить такие значения весов и смещений, которые смогут минимизировать ошибку решения. Веса и смещения автоматически настраиваются таким образом, чтобы минимизировать разность между желаемым и полученным на выходе сигналами, которая называется ошибка обучения .

Ошибка обучения для построенной нейронной сети вычисляется путем сравнения выходных и целевых (желаемых) значений. Из полученных разностей формируется функция ошибок .

Функция ошибок - это целевая функция , требующая минимизации в процессе управляемого обучения нейронной сети .

С помощью функции ошибок можно оценить качество работы нейронной сети во время обучения. Например, часто используется сумма квадратов ошибок.

От качества обучения нейронной сети зависит ее способность решать поставленные перед ней задачи.

Переобучение нейронной сети

При обучении нейронных сетей часто возникает серьезная трудность, называемая проблемой переобучения (overfitting).

Переобучение , или чрезмерно близкая подгонка - излишне точное соответствие нейронной сети конкретному набору обучающих примеров, при котором сеть теряет способность к обобщению.

Переобучение возникает в случае слишком долгого обучения, недостаточного числа обучающих примеров или переусложненной структуры нейронной сети .

Переобучение связано с тем, что выбор обучающего (тренировочного) множества является случайным. С первых шагов обучения происходит уменьшение ошибки. На последующих шагах с целью уменьшения ошибки (целевой функции) параметры подстраиваются под особенности обучающего множества . Однако при этом происходит "подстройка" не под общие закономерности ряда, а под особенности его части - обучающего подмножества. При этом точность прогноза уменьшается.

Один из вариантов борьбы с переобучением сети - деление обучающей выборки на два множества (обучающее и тестовое).

На обучающем множестве происходит обучение нейронной сети . На тестовом множестве осуществляется проверка построенной модели. Эти

Методы, правила и алгоритмы, применяемые при обучении различных топологий сетей.

. Обучение нейронных сетей.

. Методы обучения нейронных сетей .

Решение задачи на нейрокомпьютере принципиально отличается от решения той же задачи на обычной ЭВМ с Фон-Неймановской архитектурой. Решение задачи на обычной ЭВМ заключается в обработке вводимых данных в соответствии с программой. Программу составляет человек. Для составления программы нужно придумать алгоритм, т.е. определенную последовательность математических и логических действий, необходимых для решения этой задачи. Алгоритмы, как и программы, разрабатываются людьми, а компьютер используется лишь для выполнения большого количества элементарных операций: сложения, умножения, проверки логических условий и т.п.

Нейрокомпьютер же используется как “ черный ящик”, который можно обучить решению задач из какого-нибудь класса. Нейрокомпьютеру “предъявляются” исходные данные задачи и ответ, который соответствует этим данным и который был получен каким-либо способом. Нейрокомпьютер должен сам построить внутри “черного ящика” алгоритм решения этой задачи, чтобы выдавать ответ, совпадающий с правильным. Кажется естественным ожидать, что чем больше различных пар (исходных данных), (ответ) , будет предъявлено нейрокомпьютеру, тем адекватнее решаемой задаче он сконструирует модель.

После этапа обучения нейрокомпьютера следует надеяться, что если ему предъявить исходные данные, которых он раньше не встречал, он тем не менее выдает правильное решение - в этом заключается способность нейрокомпьютера к обобщению.

Поскольку в основе нейрокомпьютера лежит искусственная нейронная сеть, то процесс обучения состоит в настройке параметров это сети. При этом, как правило, топология сети считается неизменной, а к подстраиваемым параметрам обычно относятся параметры нейронов и величины синаптических весов. К настоящему моменту в литературе принято под обучением понимать процесс изменения весов связей между нейронами.

Мы рассмотрим два направления классификации методов обучения сетей. Первое направление - по способам использования учителя.

С учителем:

Cети предъявляются примеры входных данных и выходных. Сеть преобразует входные данные и сравнивает свой выход с желаемым. После этого проводится коррекция весов с целью получить лучшую согласованность выходов.

Обучение с последовательным подкреплением знаний:

В этом случае сети не дается желаемое значение выхода, а вместо этого сети ставится оценка, хорош выход или плох.

Обучение без учителя:

Сеть сама вырабатывает правила обучения путем выделения особенностей из набора входных данных.

Второе направление классификации методов обучения - по использованию элементов случайности.

Детерминистские методы:

В них шаг за шагом осуществляется процедура коррекции весов сети, основанная на использовании текущих их значений, например значений желаемых выходов сети. Рассматриваемый далее алгоритм обучения, основанный на обратном распространении ошибки, является примером детерминистского обучения.

Стохастические методы обучения:

Они основываются на использовании случайных изменений весов в ходе обучения. Рассматриваемый далее алгоритм Больцмановского обучения является примером стохастического обучения.

. Правила обучения нейросетей .

Правила обучения определяют закон, по которому сеть должна изменить свои синаптические веса в процессе обучения.

Правило Хебба (D.Hebb):

Большинство методов обучения основываются на общих принципах обучения нейросетей, развитых Дональдом Хеббом . Принцип Хебба можно сформулировать следующим образом: “ Если два нейрона одновременно активны, увеличьте силу связи между ними “, что можно записать как:

dW ij = gf (Y i) f(Y j) ,

где: dW ij - величина изменения синапса W ij

Y i - уровень возбуждения i-го нейрона

Y j - уровень возбуждения j-го нейрона

f(.) - преобразующая функция

g - константа, определяющая скорость обучения.

Большинство обучающих правил основаны на этой формуле.

Дельта-правило:

Оно известно как правило снижения квадратичной ошибки и было предложено . Дельта-правило используется при обучении с учителем.

dW ij = g (D j - Y j) Y i

где: D j - желаемый выход j-го нейрона.

Таким образом, изменение силы связей происходит в соответствии с ошибкой выходного сигнала (D j - Y j) и уровнем активности входного элемента Y. Обобщение дельта-правила, называемое обратным распространением ошибки(Back-Propagation), используется в НС с двумя и более слоями.

ART - правило:

Теория адаптивного резонанса (ART) была развита в . ART - это обучение без учителя, когда самоорганизация происходит в результате отклика на выбор входных образов. ART- сеть способна к классификации образов. ART использует концепцию долговременной и кратковременной памяти для обучения НС. В долговременной памяти хранятся реакции на образы, которым сеть была обучена, в виде векторов весов. В кратковременную память помещается текущий входной образ, ожидаемый образ, классификация входного образа. Ожидаемый образ выбирается из долговременной памяти всякий раз, когда на вход НС подается новый паттерн. Если они схожи в соответствии с определенным критерием, сеть классифицирует его как принадлежащий к существующему классу. Если они различны, формируется новый класс, в котором входной вектор будет первым членом класса.

Такое обучение называют состязательным обучением. Простейший тип состязательного обучения определяется правилом “победитель берет все“, т.е. ансамбль с лучшим выходом активизируется, остальные - подавляются.

Элемент с наибольшим уровнем активации называют “победитель”. Когда он выбран, НС добавляет черты вводимого образа в члены долговременной памяти путем повторного прогона вперед - назад через веса долговременной памяти. Этот процесс Гроссберг назвал резонансом.

Правило Кохонена:

Тео Кохонен из Хельсинского технологического института использовал концепцию состязательного обучения для развития обучающего правила ” без учителя “ в НС типа карты Кохонена (рис.3.3).

Правило Кохонена заключается в следующем. Сначала выбирается победитель по стратегии “ победитель берет все ”. Поскольку выход j-го нейрона определяется скалярным произведением (U,W j) входного вектора U с вектором весов связей между входным слоем и j-м нейроном, то он зависит от угла между векторами U,W j . Поэтому выбирается нейрон, вектор весов W j которого наиболее близок ко входному вектору U. (другими словами, выбирается наиболее активный нейрон). Далее конструируется новый вектор W j так, чтобы он был ближе ко входному вектору U, т.е. :

W ij new = W ij old + g (U - W ij old) i = 1,2,...,k.

где: k - количество входов сети.

g - константа обучения.

Больцмановское обучение:

Больцмановское обучение состоит в подкреплении обученности в соответствии с целевой функцией изменения выхода НС. Это обучение использует вероятностную функцию для изменения весов. Эта функция обычно имеет вид распределения Гаусса, хотя могут использоваться и другие распределения.

Больцмановское обучение выполняется в несколько этапов.

1. Коэффициенту T присваивают большое начальные значение.

2. Через сеть пропускают входной вектор,и по выходу вычисляют целевую функцию.

3. Случайным образом изменяют вес в соответствии с распределением Гаусса: P(x)=exp(-x 2 /T 2) ,где x - изменение веса.

4. Снова вычисляют выход и целевую функцию.

5. Если значение целевой функции уменьшилось (улучшилось) , то сохраняют изменение веса. Если же нет и величина ухудшения целевой функции составляет С, то вероятность сохранения изменения веса вычисляется следующим образом.

Величина Р(С) - вероятность изменения С в целевой функции, определяется с использованием распределения Больцмана: P(С)~exp(- С/kT)

где: k - константа, аналогичная константе Больцмана, выбирается в зависимости от условий задачи.

Затем выбирают случайное число V ,используя равномерное распределение от нуля до единицы. Если Р(С)>V , то изменение веса сохраняется иначе изменение веса равно нулю.

Шаги 3 - 5 повторяют для каждого из весов сети, при этом постепенно уменьшают T , пока не будет достигнуто приемлемо низкое значение целевой функции. После этого повторяют весь процесс обучения для другого входного вектора. Сеть обучается на всех векторах, пока целевая функция не станет допустимой для всех них. При этом для обеспечения сходимости изменение T должно быть пропорциональным логарифму времени t :

T(t) = T(0) / log(1+t)

Это означает, что скорость сходимости целевой функции невелика, следовательно,время обучения может быть очень большим.

. Алгоритмы обучения нейросетей.

Обучение сетей прямого распространения.

Для обучения сети нужно знать значения d j (j=1,2 . . .n(K)) выходов с нейронов выходного слоя (желаемые выходы) , которые сеть должна выдавать при поступлении на ее вход возбуждающего вектора I .

Ошибка функционирования сети на этих данных определяется как

где: y j - выход сети.

Для уменьшения этой ошибки следует изменить веса сети по следующему правилу:

W k new = W k old - (E/ W k)

где:  - константа, характеризующая скорость обучения.

Последняя формула описывает процесс градиентного спуска в пространстве весов. Выражение для производной dE/dW имеет следующий вид:

E/W k-1 ij = (d j - y j) f j u k-1 i для выходного слоя, т.е. k = K

E/W k-1 ij =[ (d j - y j) f j w k ij ] f j u k-1 i для скрытых слоев,

т.е. k=1,2 . . . , K-1.

Если в качестве нелинейной преобразующей функции используется сигмоидная функция, то вместо последних двух выражений удобно использовать следующие рекуррентные формулы для выходного слоя:

 k-1 j = (d j - y j) y j (1- y j) , E/W k-1 ij =  k-1 j u k-1 i

для скрытых слоев:

 k-1 j =  [  k j w k ] u j k (1- u j k) , E/W k-1 ij =  k-1 j u k-1 i

Эти соотношения называются формулами обратного распространения ошибки (Back-Propagation). Если при прямом функционировании входной сигнал распространяется по сети от входного слоя к выходному, то при подстройке весов ошибка сети распространяется от выходного слоя ко входному.

Обучение сетей Кохонена (построение карт признаков).

Для построения карты Кохонена требуется достаточно представительная выборка обучающих векторов признаков (U). Пусть каждый вектор U множества(U) имеет размерность k: U=(U 1 , U 2 , . . . ,U k).

Тогда первый (распределительный) слой сети Кохонена должен иметь k нейронов; n нейронов второго слоя (карты) располагаются из плоскости в какой-либо регулярной конфигурации, например из квадратной прямоугольной сетке (рис.3.3). Настраиваемым связям между нейронами первого и второго слоев W ij присваиваются случайные значения.

Здесь, индекс i обозначает номер нейрона первого слоя, индекс j - номер нейрона второго слоя. До начала обучения задают функцию влияния нейронов второго слоя друг на друга g(r,t) , где r- расстояние между нейронами, t- параметр, характеризующий время обучения.

Эта функция традиционно имеет вид "мексиканской шляпы" (рис.3.4.), которую в процессе обучения, по мере увеличения параметра t, делают более "узкой" . Однако часто используют более простые функции, например:

где: D - константа, характеризующая начальный радиус положительного пика "мексиканской шляпы".

Каждый цикл обучения заключается в поочередном предъявлении сети векторов обучающего множества с последующей корректировкой весов W ij . Корректировка осуществляется следующим образом:

1. При появлении на входе сети очередного обучающего вектора U сеть вычисляет отклик нейронов второго слоя:

2. Выбирается нейрон-победитель (т.е. нейрон с наибольшим откликом). Его номер C определяется как:

C = argmax Y j , j=1,2, . . ., n.

3. Корректировка весов связей W осуществляется по следующей формуле:

W ij new = W ij old +g(r,t)(U i - W ij old), i=1, . . . ,k; j=1, . . . n.

Здесь  - константа, характеризующая обучение.

Если после очередного цикла обучения процесс изменения весов замедлился, увеличивают параметр t.

Обучение сетей Хопфилда.

Здесь следует выделить две возможности, связанные с последующим использованием сети: будет ли она использоваться как ассоциативная память или для решения оптимизационной задачи.

Сеть используется как ассоциативная память. А именно: мы хотим хранить в ней m двоичных векторов V s , s=1,2, . . .n: V s =(V 1s ,V 2s ,...,V ns).

Это означает, что при предъявлении сети любого из этих векторов она должна прийти в устойчивое состояние, соответствующее этому вектору, т.е. на выходе нейронов должен выделиться этот же вектор. Если же сети будет предъявлен неизвестный ей вектор U , то на выходе сети должен появиться один из запомненных векторов V i , который наиболее близок к U.

Очевидно, количество нейронов в такой сети должно быть равно длине хранимых векторов n.

Простейший способ формирования весов такой сети достигается следующей процедурой :

Однако емкость такой сети (т.е. количество хранимых векторов m), невелика, m  log n. В работе для формирования весов использовалось правило обучения Хеббовского типа, в результате чего была достигнута емкость сети m  n.

Сеть используется для решения оптимизационной задачи. Такая возможность обусловлена следующим замечательным свойством сетей Хопфилда: в процессе функционирования сети величина (которую в литературе принято называть "энергией" сети Хопфилда), не возрастает. Один из вариантов "энергии" сети Хопфилда:

где A,B - константы, определяемые задачей. Задача исследования состоит в формулировке исходной оптимизационной проблемы в терминах нейросети и записи минимизируемого функционала E h . Полученное для W ij выражение дает значение весовых множителей. В результате функционирования сеть придает в равновесное состояние, которое соответствует локальному минимуму функционала E h . Величины возбужденности нейронов при этом соответствуют значениям аргументов, на которых достигается минимум.




Top