Как работают схемы в электронике. С чего начать изучение электроники

Предыдущая часть
Сегодня мы будем делать наше первое устройство - простейший детекторный приёмник Оганова.
Это одна из первых схем, и позволяет просто слушать радио. Маяк, Радио России и ещё несколько других. Да выбор невелик, но во первых эта схема очень простая, а во вторых работает без батареек, то есть получает питание от самой радиостанции.

Делать будем без печатной платы. Вот схема.

Давайте разбираться.

Это катушка индуктивности. Для неё нам понадобится медная проволока толщиной 0.1 - 1 мм.

Это конденсатор. Грубо говоря он подобен аккумулятору, только мгновенного действия. А если серьёзно, то конденсатор это устройство для накопления заряда и энергии электрического поля. Для тех кто ничего не понял: представьте коробку, в которую вы сыпите песок (электричество). Сыпите, сыпите, коробка уже полна, и песок высыпается наружу. А когда вы перестаёте сыпать, то коробка высыпает всё своё содержимое наружу (конденсатор разряжается). Как то так.
В нашей схеме нужны будут нужны конденсаторы с ёмкостью 1000-2000 пФ - C2 и 200-500 пФ - C1. Фарады - это единицы измерения ёмкости конденсатора, или сколько та абстрактная коробка может в себя вместить песка.

Диод. Это полупроводниковый прибор, пропускающий ток (поток электронов только в одну сторону). Представте себе охранника, который работает по принципу " Всех пускать, никого не выпускать! " Или с точностью наоборот, в зависимости от того как нам его поставить. Нам подойдёт любой, кроме светодиода (который как понятно светится).

Это динамик - говорилка. Его мы можем выковырнуть из старого советского телефона, или купить. Нам нужен высокоомный - примерно 60 ом.
upload.wikimedia.org/wikipedia/commons/thumb/9/91/Earth_Ground.svg/200px-Earth_Ground.svg.png
Это заземление. Подключим его к батарее отопления.
А последний элемент - антену сделаем из длиннющего куска проволоки - метра 3.

Как делать катушку? Катушка состоит из двух частей, по 25 витков каждая. Как сделать катушку? Берем что-нибудь круглое диаметром около 10 см (например, банка из под кофе), обклеиваем в несколько слоёв бумагой. Первый слой прилепляем к банке скотчем, второй неплотно накручивается на первый. В этом случае катушку после намотки легко будет снять. Теперь аккуратно наматываем медную проволоку – виток к витку. Между двумя частями катушки оставляем 5 сантиметров проволоки, а также не забываем оставить примерно столько же проволоки на входе и выходе. После того как вы намотали катушку, ее следует обмотать изолентой или скотчем в два слоя вдоль витков. А после снятия с банки – обмотать ещё и поперёк.
Соединим всё с помощью пайки. Как паять? Легко.
Осторожно, жало паяльника очень горячее, если обожжётесь поднесите руку под холодную воду. Ожог скоро заживёт.
Вот сама схема пайки:

Спасибо за внимание!

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте , на мой ответ, что в инете море информации на эту тему, занимайся - не хочу, я услышал от обоих примерно одинаковое, - что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 - 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 - 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги - дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно - утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet ), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип . Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта - AKV .

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.

Основная деятельность напрямую не связана с электроникой. Она, как и программирование, всегда были лишь хобби. Семь лет назад я стал папой и вот пришло время научить сына, заодно попутно вспомнить всё, ну и научиться самому.

Вернусь к указанной выше статье. Кто нибудь посчитал количество употреблений слова «тупо»? Тупо берём, тупо вставляем, тупо находим скетч, тупо заливаем. И даже если работает, тупо не понимаем, что, зачем, почему. Я сторонник системного подхода. Но понимаю, что для поддержания интереса нужна и практика. И первое, чему мы научились с сыном, это паять. Нулевым были, наверное, бесконечные инструкции по технике безопасности. И всё же одного, пусть самого маленького, но ожога отскочившим при отпайке провода сын не избежал. Я его безумно люблю, он у меня один. Но считаю, что этот опыт был неизбежен и необходим. Ещё одной из тем нудных инструкций была бытовая электрическая сеть 220 вольт. Что ничего нельзя к ней подключать самому. Объяснения, что нужно долго учиться. Демонстрация фотографий поражения электрическим током, бесконечные истории «А вот, мальчик полез, и ток его убил. Он умер!!». Чувствую, что не прав. Многие скажут «Ты заложил в него комплекс, страх!». Но лучше я потом буду бороться с его фобией 220 вольт, чем он пострадает, самонадеянно решив, что всё сделал правильно, и полезет к розетке сейчас.

Теперь, садясь паять, он надевает одежду с длинным рукавом, всегда придерживает провода. Всегда внимателен к тому, где на столе паяльник, и в каком состоянии он находится. И не лезет к розетке. Вторым была суть электрической цепи. Что такое напряжение, ток, сопротивление. Очень помогли в этом статьи на Хабре. Аналогии с водой и трубами. Может великие гуру и считают их неточными, спорят. Но для ребёнка самое то. Есть батарейка - насос, есть провода - трубы. Есть устройства, использующие напор и объём протекающей воды - электричества. И есть элементы управления. Кнопки, выключатели, переключатели. На примере воды было объяснено, почему сгорел светодиод. Да его просто порвало диким напором. Конечно, были и вопросы. Если его порвало, почему электричество не вытекает? Помнишь, у нас в ванне порвало шланг душа? Пытливый детский ум. Который в итоге смог понять, что есть аналогии. Что вода аналогия, но не то же самое. После была практика. Бесконечные фонарики, маяки на башне из кубиков лего, с пультом управления, вынесенным на проводе. Ветвление цепей, главный выключатель, выключатели отдельных каналов. Суть сопротивлений. Сужение на трубе, форсунка, снижающая напор. Ещё позже были электромоторчики, редукторы. Первый станок из разобранного CD-Rom, рисующего шариковой ручкой всего лишь прямую линию. Но управляемого с выключателей и кнопок. Небольшое введение в механику. Для чего нужен редуктор, как он снижает обороты, но увеличивает силу.

И вот, встал выбор. Что дальше? Ардуино? При том, что он по русски то ещё толком читать не умеет. Путь «Тупо покупаем, тупо вставляем, тупо заливаем скачанную прошивку»? Я решил, а почему бы не быть переходной стадии? Да, микросхемы, но пока БЕЗ ардуино. Просто попробовать свои силы с элементарной логикой. А ещё изучить метод ЛУТ. На носу был день всех влюблённых. И родилось это:

Схема типовая, из мануала к таймеру NE555. Две микросхемы, собственно сам таймер и десятичный счётчик - дешифратор CD4017 (русский аналог К561ИЕ8).

Отличие только в том, что на выходы дешифратора подключены параллельно по два светодиода. Номиналы деталей: R1 от 10 до 47 кОм, VR1 (подстроечный) 47кОм, R2 56 Ом. С1 100мкФ 16В, С2 10мкФ 16В, 20 светодиодов.

Принцип работы: конденсатор С2, резистор R1 и подстроечный резистор VR1 образуют времязадающую цепочку для таймера NE555. Счётчик - дешифратор получает от таймера импульсы и выставляет «единичку» (напряжение питания) на своих выходах, к которым подключены светодиоды. В итоге получается последовательное включение светодиодов - бегущий огонёк. Резистор R2 ограничивает ток светодиодов на уровне 10 - 20 мА (миллиампер). Один на всех, так как в каждый момент времени активен только один выход дешифратора. Источник питания - батарея «Крона». Но схема будет работать как от порта USB, так и от бортовой сети мотоцикла или автомобиля. Надо лишь подобрать значение резистора R2. Обе микросхемы очень неприхотливы и спокойно работают в диапазоне напряжений питания от 5 до 16 вольт. При питании «кроной», номинале R1 10кОм, частота импульсов таймера около 5 герц, ток потребления всей схемы 22 мА.

Печатная плата выполнена в форме сердца из одностороннего фольгированного текстолита, лазерно - утюжным методом. На рисунке дорожек есть линия контура. После травления края грубо опиливаются полотном по металлу, после обрабатываются наждачной бумагой. На изготовление платы уходит 1 час.

На рисунке красным обозначены перемычки, изготавливаемые из обрезаемых ножек светодиодов, впаянные со стороны деталей. Плата разведена в Word"е. Да, не дружу я пока ни с Eagle, ни с Proteus. Но так проще. Открываем, либо печатаем дома на глянцевую фотобумагу на лазерном принтере, либо в фотомастерской, копировальном центре или минитипографии. Я распечатал в ближайшем центре. Цена одного листа 30 рублей. Шесть копий рисунка платы на листе.

Кто не знаком с лазерно-утюжным методом: берём кусок фольгированного текстолита, зачищаем нулёвкой, обезжириваем ацетоном или спиртом. Прикладываем отпечаток дорожек тонером к фольге. Проглаживаем очень горячим утюгом минут пять, стараясь не сдвинуть отпечаток на фольге. Кладём получившийся бутерброд между двумя фанерками, и придавливаем (у меня 2 гантели по килограмму). Когда остынет кидаем в холодную воду. Через пол часа аккуратно скатываем размокшую бумагу. Весь тонер, рисунок, остаётся на фольге. Бумагу надо смыть тщательно, чтобы рисунок не белел при высыхании. Особенно центры отверстий. Так будет легче сверлить. Если есть мелкие недостатки (тонер не везде прилип) - подрисовываем лаком для ногтей. Потом кладём плату в раствор хлорного железа, покачиваем. В свежем растворе плата травится 10 - 12 минут. Для рук он безопасен. Но надо быть аккуратным. Пятна хлорного железа не отмываются с раковин из нержавеющей стали. Раствор можно использовать многократно. После травления промываем плату водой, можно с мылом. Смываем тонер ацетоном. Сверлим отверстия сверлом 1 мм. Они протравлены, кернить не надо, сверло не убегает. Лудим либо все дорожки целиком, либо только контактные площадки (на мой взгляд так красивее). Придаём плате нужную форму ножовочным полотном по металлу и наждачкой. Плата готова.

Подготавливаем детали. Ножки диодов и конденсаторов подрезаем, оставляя 2,5 - 3 мм. Ножки резисторов подгибаем, и также подрезаем. Из обрезков ножек светодиодов делаем перемычки. Ножки деталей должны торчать со стороны дорожек на 0,5 - 1 мм. Запаиваем, обращая внимание на полярность светодиодов (катодом на общий проводник по краю), электролитических конденсаторов и микросхем (плюсы конденсаторов и ключи микросхем помечены красными точками на рисунке дорожек). С пайкой справился мой сын.

Результат:

С корпусом мы не успели. Изготовили только подставку из оргстекла. На плате оставили выступ, на пластинке оргстекла высверлили паз. Заклеили на суперклей. Батарейку приклеили за платой на двухсторонний скотч.

Все детали можно приобрести в любом интернет-магазине. Мы покупали в магазинах города. Все детали, лист текстолита на 2 валентинки, хлорное железо, лак для ногтей нам обошлись в 500 рублей. Причём из них 300 - хлорное железо и текстолит. Светодиоды тоже дороговаты, 6 рублей штучка. На алиекспрессе продаются наборы. Чем больше штук, тем дешевле. Клемма для кроны 25 рублей. Микросхемы, резисторы и конденсаторы, стоят вообще копейки (рубли).

Проект можно модифицировать. Расположить по другому светодиоды, сильно увеличить время переключения, и поставить светодиоды, моргающие всеми цветами хаотично. Либо наоборот, уменьшить время. Получится эффект биения сердца, мерцающий красный контур. Можно сделать повторители поворотников для зеркал авто, мото, вело. Либо поставить под заднее стекло авто как дополнительный стоп-сигнал вместо китайской светодиодной линейки. Только подобрать номинал токоограничивающего резистора R2. Можно на выходы дешифратора повесить транзисторные ключи и хоть десятью новогодними гирляндами управлять.

Было изготовлено 2 готовых устройства, для мамы и двоюродной сестрёнки. И ещё две платы, которые остались лежать до лучших времён. Сын потерял к этому устройству интерес. Ему уже хочется больше. Он уже грезит 3D принтерами и фрезерами. Знает, что там шаговые моторы. Но следующее, чем мы занялись - это велокомпьютер. И он уже будет на ардуино нано. Но об этом уже в следующей статье.

Когда в цепи необходимо подавить переменные токи определенного частотного спектра, но при этом эффективно пропустить токи с частотами, находящимися выше или ниже этого спектра, может пригодиться пассивный LC-фильтр на реактивных элементах - фильтр нижних частот ФНЧ (если необходимо эффективно пропустить колебания с частотой ниже заданной) или фильтр верхних частот ФВЧ (при необходимости эффективно пропустить колебания с частотой выше заданной). Принцип построения данных фильтров основывается на свойствах индуктивностей и емкостей...

В одной из предыдущих статей мы рассмотрели общий принцип работы активных корректоров коэффициента мощности (ККМ или PFC). Однако ни одна схема корректора не заработает без контроллера, задача которого - правильно организовать управление полевым транзистором в общей схеме. В качестве яркого примера универсального PFC-контроллера для реализации ККМ можно привести популярную микросхему L6561, которая выпускается в SO-8 и DIP-8 корпусах, и предназначается для построения сетевых блоков коррекции коэффициента мощности номиналом до 400 Вт...

Коэффициент мощности и фактор наличия гармоник сетевой частоты являются важными показателями качества электроэнергии, особенно для электронного оборудования, которое этой электроэнергией питается. Для поставщика переменного тока желательно, чтобы коэффициент мощности потребителей был приближен к единице, а для электронных приборов важно чтобы гармонических искажений было бы как можно меньше. В таких условиях и электронные компоненты устройств проживут дольше, и нагрузке будет более комфортно работать. В реальности же имеет место проблема, которая состоит в том...

В данной статье будет приведен порядок расчета и подбора компонентов, необходимых при проектировании силовой части понижающего импульсного преобразователя постоянного тока без гальванической развязки, топологии buck-converter. Преобразователи данной топологии хорошо подходят для понижения постоянного напряжения в пределах 50 вольт по входу и при мощностях нагрузки не более 100 Вт. Все что касается выбора контроллера и схемы драйвера, а также типа полевого транзистора, оставим за рамками данной статьи, однако подробно разберем схему и особенности рабочих режимов...

Варистором называется полупроводниковый компонент, способный нелинейно изменять свое активное сопротивление в зависимости от величины приложенного к нему напряжения. По сути это - резистор с такой вольт-амперной характеристикой, линейный участок которой ограничен узким диапазоном, к которому приходит сопротивление варистора при приложении к нему напряжения выше определенного порогового. В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков - уменьшается от изначальных десятков МОм до единиц Ом...

Оптрон - оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи...

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай). В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не сердечник дросселя, он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки. Это именно импульсный трансформатор с фиксированным...




Top