Грустная правда о безопасности домашнего Wi-Fi. Тип безопасности и шифрования беспроводной сети. Какой выбрать

Институт финансовой и экономической безопасности

РЕФЕРАТ

Безопасность беспроводных сетей

Выполнил:

Студент группы У05-201

Михайлов М.А.

Проверил:

Доцент кафедры

Бурцев В.Л.

Москва

2010

Введение

Стандарт безопасности WEP

Стандарт безопасности WPA

Стандарт безопасности WPA2

Заключение

Введение

История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 30-е годы появилось радио с частотной модуляцией и телевидение. В 70-е годы созданы первые беспроводные телефонные системы как естественный итог удовлетворения потребности в мобильной передаче голоса. Сначала это были аналоговые сети, а начале 80-х был разработан стандарт GSM, ознаменовавший начало перехода на цифровые стандарты, как обеспечивающие лучшее распределение спектра, лучшее качество сигнала, лучшую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они создают новые устройства и услуги.

Обилие новых беспроводных технологий таких, как CDMA (Code Division Multiple Access, технология с кодовым разделением каналов), GSM (Global for Mobile Communications, глобальная система для мобильных коммуникаций), TDMA (Time Division Multiple Access, множественный доступ с разделением во времени), 802.11, WAP (Wireless Application Protocol, протокол беспроводных технологий), 3G (третье поколение), GPRS (General Packet Radio Service, услуга пакетной передачи данных), Bluetooth (голубой зуб, по имени Харальда Голубого Зуба – предводителя викингов, жившего в Х веке), EDGE (Enhanced Data Rates for GSM Evolution, увеличенная скорость передачи даны для GSM), i-mode и т.д. говорит о том, что начинается революция в этой области.

Весьма перспективно и развитие беспроводных локальных сетей (WLAN), Bluetooth (сети средних и коротких расстояний). Беспроводные сети развертываются в аэропортах, университетах, отелях, ресторанах, предприятиях. История разработки стандартов беспроводных сетей началась в 1990 году, когда был образован комитет 802.11 всемирной организацией IEEE (Институт инженеров по электричеству и электронике). Значительный импульс развитию беспроводных технологий дала Всемирная паутина и идея работы в Сети при помощи беспроводных устройств. В конце 90-х годов пользователям была предложена WAP-услуга, сначала не вызвавшая у населения большого интереса. Это были основные информационные услуги – новости, погода, всевозможные расписания и т.п. Также весьма низким спросом пользовались вначале и Bluetooth, и WLAN в основном из-за высокой стоимости этих средств связи. Однако по мере снижения цен рос и интерес населения. К середине первого десятилетия XXI века счет пользователей беспроводного Интернет – сервиса пошел на десятки миллионов. С появлением беспроводной Интернет - связи на первый план вышли вопросы обеспечения безопасности. Основные проблемы при использовании беспроводных сетей это перехват сообщений спецслужб, коммерческих предприятий и частных лиц, перехват номеров кредитных карточек, кража оплаченного времени соединения, вмешательство в работу коммуникационных центров.

Как и любая компьютерная сеть, Wi-Fi – является источником повышенного риска несанкционированного доступа. Кроме того, проникнуть в беспроводную сеть значительно проще, чем в обычную, - не нужно подключаться к проводам, достаточно оказаться в зоне приема сигнала.

Беспроводные сети отличаются от кабельных только на первых двух - физическом (Phy) и отчасти канальном (MAC) - уровнях семиуровневой модели взаимодействия открытых систем. Более высокие уровни реализуются как в проводных сетях, а реальная безопасность сетей обеспечивается именно на этих уровнях. Поэтому разница в безопасности тех и других сетей сводится к разнице в безопасности физического и MAC-уровней.

Хотя сегодня в защите Wi-Fi-сетей применяются сложные алгоритмические математические модели аутентификации, шифрования данных и контроля целостности их передачи, тем не менее, вероятность доступа к информации посторонних лиц является весьма существенной. И если настройке сети не уделить должного внимания злоумышленник может:

· заполучить доступ к ресурсам и дискам пользователей Wi-Fi-сети, а через неё и к ресурсам LAN;

· подслушивать трафик, извлекать из него конфиденциальную информацию;

· искажать проходящую в сети информацию;

· внедрять поддельные точки доступа;

· рассылать спам, и совершать другие противоправные действия от имени вашей сети.

Но прежде чем приступать к защите беспроводной сети, необходимо понять основные принципы ее организации. Как правило, беспроводные сети состоят из узлов доступа и клиентов с беспроводными адаптерами. Узлы доступа и беспроводные адаптеры оснащаются приемопередатчиками для обмена данными друг с другом. Каждому AP и беспроводному адаптеру назначается 48-разрядный адрес MAC, который функционально эквивалентен адресу Ethernet. Узлы доступа связывают беспроводные и проводные сети, обеспечивая беспроводным клиентам доступ к проводным сетям. Связь между беспроводными клиентами в одноранговых сетях возможна без AP, но этот метод редко применяется в учреждениях. Каждая беспроводная сеть идентифицируется назначаемым администратором идентификатором SSID (Service Set Identifier). Связь беспроводных клиентов с AP возможна, если они распознают SSID узла доступа. Если в беспроводной сети имеется несколько узлов доступа с одним SSID (и одинаковыми параметрами аутентификации и шифрования), то возможно переключение между ними мобильных беспроводных клиентов.

Наиболее распространенные беспроводные стандарты - 802.11 и его усовершенствованные варианты. В спецификации 802.11 определены характеристики сети, работающей со скоростями до 2 Мбит/с. В усовершенствованных вариантах предусмотрены более высокие скорости. Первый, 802.11b, распространен наиболее широко, но быстро замещается стандартом 802.11g. Беспроводные сети 802.11b работают в 2,4-ГГц диапазоне и обеспечивают скорость передачи данных до 11 Мбит/с. Усовершенствованный вариант, 802.11a, был ратифицирован раньше, чем 802.11b, но появился на рынке позднее. Устройства этого стандарта работают в диапазоне 5,8 ГГц с типовой скоростью 54 Мбит/с, но некоторые поставщики предлагают более высокие скорости, до 108 Мбит/с, в турборежиме. Третий, усовершенствованный вариант, 802.11g, работает в диапазоне 2,4 ГГц, как и 802.11b, со стандартной скоростью 54 Мбит/с и с более высокой (до 108 Мбит/с) в турборежиме. Большинство беспроводных сетей 802.11g способно работать с клиентами 802.11b благодаря обратной совместимости, заложенной в стандарте 802.11g, но практическая совместимость зависит от конкретной реализации поставщика. Основная часть современного беспроводного оборудования поддерживает два или более вариантов 802.11. Новый беспроводной стандарт, 802.16, именуемый WiMAX, проектируется с конкретной целью обеспечить беспроводной доступ для предприятий и жилых домов через станции, аналогичные станциям сотовой связи. Эта технология в данной статье не рассматривается.

Реальная дальность связи AP зависит от многих факторов, в том числе варианта 802.11 и рабочей частоты оборудования, изготовителя, мощности, антенны, внешних и внутренних стен и особенностей топологии сети. Однако беспроводной адаптер с узконаправленной антенной с большим коэффициентом усиления может обеспечить связь с AP и беспроводной сетью на значительном расстоянии, примерно до полутора километров в зависимости от условий.

Из-за общедоступного характера радиоспектра возникают уникальные проблемы с безопасностью, отсутствующие в проводных сетях. Например, чтобы подслушивать сообщения в проводной сети, необходим физический доступ к такому сетевому компоненту, как точка подсоединения устройства к локальной сети, коммутатор, маршрутизатор, брандмауэр или хост-компьютер. Для беспроводной сети нужен только приемник, такой как обычный сканер частот. Из-за открытости беспроводных сетей разработчики стандарта подготовили спецификацию Wired Equivalent Privacy (WEP), но сделали ее использование необязательным. В WEP применяется общий ключ, известный беспроводным клиентам и узлам доступа, с которыми они обмениваются информацией. Ключ можно использовать как для аутентификации, так и для шифрования. В WEP применяется алгоритм шифрования RC4. 64-разрядный ключ состоит из 40 разрядов, определяемых пользователем, и 24-разрядного вектора инициализации. Пытаясь повысить безопасность беспроводных сетей, некоторые изготовители оборудования разработали расширенные алгоритмы со 128-разрядными и более длинными ключами WEP, состоящими из 104-разрядной и более длинной пользовательской части и вектора инициализации. WEP применяется с 802.11a, 802.11b- и 802.11g-совместимым оборудованием. Однако, несмотря на увеличенную длину ключа, изъяны WEP (в частности, слабые механизмы аутентификации и ключи шифрования, которые можно раскрыть методами криптоанализа) хорошо документированы, и сегодня WEP не считается надежным алгоритмом.

В ответ на недостатки WEP отраслевая ассоциация Wi-Fi Alliance приняла решение разработать стандарт Wi-Fi Protected Access (WPA). WPA превосходит WEP благодаря добавлению протокола TKIP (Temporal Key Integrity Protocol) и надежному механизму аутентификации на базе 802.1x и протокола EAP (Extensible Authentication Protocol). Предполагалось, что WPA станет рабочим стандартом, который можно будет представить для одобрения комитету IEEE в качестве расширения для стандартов 802.11. Расширение, 802.11i, было ратифицировано в 2004 г., а WPA обновлен до WPA2 в целях совместимости с Advanced Encryption Standard (AES) вместо WEP и TKIP. WPA2 обратно совместим и может применяться совместно с WPA. WPA был предназначен для сетей предприятий с инфраструктурой аутентификации RADIUS (Remote Authentication Dial-In User Service - служба дистанционной аутентификации пользователей по коммутируемым линиям), но версия WPA, именуемая WPA Pre-Shared Key (WPAPSK), получила поддержку некоторых изготовителей и готовится к применению на небольших предприятиях. Как и WEP, WPAPSK работает с общим ключом, но WPAPSK надежнее WEP.

Серьезной проблемой для всех беспроводных локальных сетей (и, если уж на то пошло, то и всех проводных локальных сетей) является безопасность. Безопасность здесь так же важна, как и для любого пользователя сети Интернет. Безопасность является сложным вопросом и требует постоянного внимания. Огромный вред может быть нанесен пользователю из-за того, что он использует случайные хот-споты (hot-spot) или открытые точки доступа WI-FI дома или в офисе и не использует шифрование или VPN (Virtual Private Network - виртуальная частная сеть). Опасно это тем, что пользователь вводит свои личные или профессиональные данные, а сеть при этом не защищена от постороннего вторжения.

WEP

Изначально было сложно обеспечить надлежащую безопасность для беспроводных локальных сетей.

Хакеры легко осуществляли подключение практически к любой WiFi сети взламывая такие первоначальные версии систем безопасности, как Wired Equivalent Privacy (WEP). Эти события оставили свой след, и долгое время некоторые компании неохотно внедряли или вовсе не внедряли у себя беспроводные сети, опасаясь, что данные, передаваемые между беспроводными WiFi устройствами и Wi-Fi точками доступа могут быть перехвачены и расшифрованы. Таким образом, эта модель безопасности замедляла процесс интеграции беспроводных сетей в бизнес и заставляла нервничать пользователей, использующих WiFi сети дома. Тогда институт IEEE, создал рабочую группу 802.11i , которая работала над созданием всеобъемлющей модели безопасности для обеспечения 128-битного AES шифрования и аутентификации для защиты данных. Wi-Fi Альянс представил свой собственный промежуточный вариант этого спецификации безопасности 802.11i: Wi-Fi защищенный доступ (WPA – Wi-Fi Protected Access). Модуль WPA сочетает несколько технологий для решения проблем уязвимости 802.11 WEP системы. Таким образом, WPA обеспечивает надежную аутентификацию пользователей с использованием стандарта 802.1x (взаимная аутентификация и инкапсуляция данных передаваемых между беспроводными клиентскими устройствами, точками доступа и сервером) и расширяемый протокол аутентификации (EAP).

Принцип работы систем безопасности схематично представлен на рис.1

Также, WPA оснащен временным модулем для шифрования WEP-движка посредствам 128 – битного шифрования ключей и использует временной протокол целостности ключей (TKIP). А с помощью контрольной суммы сообщения (MIC) предотвращается изменение или форматирование пакетов данных. Такое сочетание технологий защищает конфиденциальность и целостность передачи данных и гарантирует обеспечение безопасности путем контроля доступа, так чтобы только авторизованные пользователи получили доступ к сети.

WPA

Дальнейшее повышение безопасности и контроля доступа WPA заключается в создании нового уникального мастера ключей для взаимодействия между каждым пользовательским беспроводным оборудованием и точками доступа и обеспечении сессии аутентификации. А также, в создании генератора случайных ключей и в процессе формирования ключа для каждого пакета.

В IEEE стандарт 802.11i, ратифицировали в июне 2004 года, значительно расширив многие возможности благодаря технологии WPA. Wi-Fi Альянс укрепил свой модуль безопасности в программе WPA2. Таким образом, уровень безопасности передачи данных WiFi стандарта 802.11 вышел на необходимый уровень для внедрения беспроводных решений и технологий на предприятиях. Одно из существенных изменений 802.11i (WPA2) относительно WPA это использования 128-битного расширенного стандарта шифрования (AES). WPA2 AES использует в борьбе с CBC-MAC режимом (режим работы для блока шифра, который позволяет один ключ использовать как для шифрования, так и для аутентификации) для обеспечения конфиденциальности данных, аутентификации, целостности и защиты воспроизведения. В стандарте 802.11i предлагается также кэширование ключей и предварительной аутентификации для упорядочивания пользователей по точкам доступа.

WPA2

Со стандартом 802.11i, вся цепочка модуля безопасности (вход в систему, обмен полномочиями, аутентификация и шифрование данных) становится более надежной и эффективной защитой от ненаправленных и целенаправленных атак. Система WPA2 позволяет администратору Wi-Fi сети переключиться с вопросов безопасности на управление операциями и устройствами.

Стандарт 802.11r является модификацией стандарта 802.11i. Данный стандарт был ратифицирован в июле 2008 года. Технология стандарта более быстро и надежно передает ключевые иерархии, основанные на технологии Handoff (передача управления) во время перемещения пользователя между точками доступа. Стандарт 802.11r является полностью совместимой с WiFi стандартами 802.11a/b/g/n.

Также существует стандарт 802.11w , предназначенный для усовершенствования механизма безопасности на основе стандарта 802.11i. Этот стандарт разработан для защиты управляющих пакетов.

Стандарты 802.11i и 802.11w – механизмы защиты сетей WiFi стандарта 802.11n.

Шифрование файлов и папок в Windows 7

Функция шифрования позволяет вам зашифровать файлы и папки, которые будет в последствии невозможно прочитать на другом устройстве без специального ключа. Такая возможность присутствует в таких версиях пакетаWindows 7 как Professional, Enterprise или Ultimate. Далее будут освещены способы включения шифрования файлов и папок.

Включение шифрования файлов:

Пуск -> Компьютер(выберите файл для шифрования)-> правая кнопка мыши по файлу->Свойства->Расширенный(Генеральная вкладка)->Дополнительные атрибуты->Поставить маркер в пункте шифровать содержимое для защиты данных->Ок->Применить->Ok(Выберите применить только к файлу)->

Включение шифрования папок:

Пуск -> Компьютер(выберите папку для шифрования)-> правая кнопка мыши по папку-> Свойства->Расширенный(Генеральная вкладка)->Дополнительные атрибуты-> Поставить маркер в пункте шифровать содержимое для защиты данных->Ок->Применить->Ok(Выберите применить только к файлу)->Закрыть диалог Свойства(Нажать Ok или Закрыть).

Угрозы для сетей WLAN

Обеспечить безопасность беспроводной сети еще сложнее, чем защитить проводную сеть. Защита должна стоять на первом месте для всех, кто использует или администрирует сети.

В диапазоне действия точки доступа сеть WLAN открыта для всех, кто обладает соответствующими учетными данными, посредством которых выполняется ассоциация с точкой доступа. Обладая беспроводным сетевым адаптером и знанием приемов взлома, злоумышленник может не присутствовать физически в том месте, где находится сеть WLAN, чтобы получить к ней доступ.

Вопросы безопасности приобретают еще большее значение, когда речь идет о корпоративных сетях, поскольку жизнедеятельность компании, помимо прочего, зависит от защищённости данных. Нарушения системы безопасности могут иметь катастрофические последствия для компаний, особенно если компания оперирует финансовой информацией своих клиентов. Беспроводные сети все чаще развертываются на предприятиях и во многих случаях являются уже не просто более удобным вариантом, но и критически важной частью сети. Хотя сети WLAN всегда были подвержены атакам, по мере роста их популярности они становятся целью номер один.

Атаки могут инициироваться посторонними людьми и недовольными сотрудниками, но помимо подобных недоброжелателей атака может быть ненамеренно спровоцирована любым сотрудником. Беспроводные сети особенно подвержены следующим угрозам:

· беспроводные злоумышленники;

· вредоносные приложения;

· перехват данных

· атаки DoS

На рисунке нажмите на каждую из угроз, чтобы просмотреть дополнительные сведения.

Примечания . В этой главе не рассматриваются такие угрозы, как спуфинг MAC-адреса точки доступа или беспроводного клиента, взлом и атаки на инфраструктуру.

Атака типа «отказ в обслуживании»

Ниже приведены причины возникновения DoS-атаки на беспроводную сеть.

· Неправильная настройка устройств - ошибки конфигурации могут стать причиной отключения сети WLAN. Например, администратор может случайно изменить конфигурацию и отключить сеть, либо злоумышленник с правами администратора может отключить сеть WLAN намеренно.



· Злоумышленник, намеренно препятствующий обмену данными по беспроводной сети - такие злоумышленники стремятся отключить беспроводную сеть полностью или до той степени, когда санкционированные устройства не смогут получить доступ к среде.

· Случайные помехи - сети WLAN работают на нелицензируемых частотных полосах и, следовательно, все беспроводные сети независимо от функций безопасности подвержены воздействию помех со стороны других беспроводных устройств. Случайные помехи могут возникать в результате работы таких устройств, как микроволновые печи, радиотелефоны, радио-няни и др. Полоса 2,4 ГГц в большей степени подвержена воздействию помех, чем полоса 5 ГГц.

Чтобы минимизировать риск DoS-атаки вследствие неправильной настройки устройств и вредоносных атак, следует обеспечить защиту всех устройств, хранить пароли в надежном месте, создавать резервные копии и изменять конфигурацию только в нерабочие часы.

Случайные помехи возникают только в случае работы других беспроводных устройств. Оптимальным решением является мониторинг сети WLAN на предмет проблем, связанных с помехами, и решение таких проблем по мере их возникновения. Поскольку полоса 2,4 ГГц в большей степени подвержена воздействию помех, в наиболее слабых зонах можно использовать полосу 5 ГГц. Некоторые решения для сетей WLAN обеспечивают автоматическую регулировку каналов точками доступа и позволяют использовать полосу 5 ГГц, чтобы компенсировать помехи. Например, некоторые решения стандарта 802.11n/ac/ad подстраиваются автоматически в целях противодействия помехам.

На рисунке показано, как радиотелефон или микроволновая печь могут создавать помехи для обмена данными по сети WLAN.

Технология Cisco CleanAir позволяет устройствам определять и находить источники помех, не относящиеся к стандарту 802.11. Эта технология создает сеть, которая способна автоматически приспосабливаться к изменениям в среде.

DoS-атаки с использованием кадров управления

Хотя это и маловероятно, злоумышленники могут намеренно инициировать DoS-атаку, используя устройства радиоэлектронного противодействия, которые создают случайные помехи. Более вероятно, что злоумышленники попытаются оперировать кадрами управления, потребляя, таким образом, ресурсы точки доступа, и загрузят каналы настолько, что они не смогут обслуживать санкционированный пользовательский трафик.

Кадры управления можно использовать для организации различных типов DoS-атак. Распространены два типа атак с использованием кадров управления.

· Атака путем ложного отключения - для осуществления такой атаки злоумышленник отправляет набор команд «отмены ассоциации» на все беспроводные устройства в пределах BSS. Эти команды вызывают отключение всех клиентов. При отключении все беспроводные клиенты сразу же пытаются выполнить повторную ассоциацию, что вызывает резкое увеличение объёма трафика. Злоумышленник продолжает отправлять кадры отмены ассоциации, и цикл повторяется.

· Лавинная атака разрешений отправки CTS - данный тип атаки возникает, когда злоумышленник использует метод разрешения конфликтов в среде CSMA/CA для монополизации полосы пропускания и отклонения доступа для всех остальных беспроводных клиентов. Для этого злоумышленник постоянно выполняет в BSS лавинную рассылку разрешений отправки CTS на ложный STA. Все остальные беспроводные клиенты, совместно использующие среду радиочастот, принимают CTS и перестают выполнять передачу данных до тех пор, пока злоумышленник не прекратит передачу кадров CTS.

На рис. 1 показано, как беспроводной клиент и точка доступа используют метод CSMA/CA для доступа к среде.

На рис. 2 показано, как злоумышленник создает лавинную рассылку кадров CTS на ложный беспроводной клиент. Теперь все остальные клиенты вынуждены дожидаться завершения периода, заданного в кадре CTS. Однако злоумышленник продолжает отправлять кадры CTS. Следовательно, остальные клиенты вынуждены постоянно ждать. Таким образом, злоумышленник контролирует среду.

Примечание . Это всего лишь единичный пример атаки с использованием кадров управления. Существуют и многие другие.

Чтобы снизить риск возникновения подобных атак, корпорация Cisco разработала ряд решений, включая функцию Cisco Management Frame Protection (MFP), которая также обеспечивает полноценную профилактическую защиту от спуфинга кадров и устройств. Система предотвращения вторжений Cisco Adaptive Wireless дополняет это решение функциями обнаружения вторжений на ранних сроках путем сопоставления сигнатур атак.

Комитет по стандартам IEEE 802.11 также разработал два стандарта безопасности беспроводной сети. Стандарт 802.11i, использующий Cisco MFP, определяет механизмы безопасности для беспроводных сетей, в то время как стандарт защиты кадров управления 802.11w направлен на решение проблем, связанных с манипуляцией кадрами управления.

Вредоносные точки доступа

Вредоносная точка доступа представляет собой беспроводной маршрутизатор, который можно охарактеризовать следующим образом.

· Такой маршрутизатор подключается к корпоративной сети без явной авторизации и в нарушение корпоративной политики. Любой пользователь, имеющий доступ к объектам, может установить (со злым умыслом или без) недорогой беспроводной маршрутизатор, который теоретически обеспечивает доступ к ресурсам защищенной сети.

· Злоумышленник может подключить или включить такой маршрутизатор с целью захвата данных клиента (например, MAC-адреса беспроводных и проводных клиентов) или захвата и маскировки пакетов данных для получения доступа к ресурсам сети; или же в целях инициации атаки с перехватом.

Следует также учитывать, насколько просто создать персональную беспроводную точку доступа. Например, пользователь, имеющий защищённый доступ к сети, настраивает свой авторизованный узел Windows, как точку доступа к сети Wi-Fi. При этом несакционированные устройства обходят меры безопасности и получают доступ к ресурсам сети, как одно общее устройство.

Чтобы предотвратить установку вредоносных точек доступа, организации должны использовать программное обеспечение для активного мониторинга спектра радиосигналов на предмет наличия несанкционированных точек доступа. Например, на снимке экрана программного обеспечения для управления сетями инфраструктуры Cisco Prime на рисунке показана карта радиочастот, определяющая местоположение злоумышленника с обнаруженным ложным MAC-адресом.

Примечание . Cisco Prime является программным обеспечением для управления сетями, которое взаимодействует с другими подобными программами, обеспечивая общее представление и централизованное размещение всех данных о сети. Как правило, это ПО развертывается в очень крупных организациях.

Атака с перехватом

К одному из более сложных типов атак, которые может применить злоумышленник, относится атака с перехватом. Существует множество способов создания атаки с перехватом.

Один из самых распространённых видов такой атаки называется «злой двойник», в рамках которой злоумышленник внедряет вредоносную точку доступа и настраивает ее с использованием такого же имени SSID, что и у санкционированной точки доступа. Места, где предлагается бесплатный доступ к сети Wi-Fi, например, аэропорты, кафе и рестораны - самые популярные мишени для атак такого типа, поскольку на этих объектах используется открытая аутентификация.

При подключении беспроводных клиентов отображаются две точки доступа, предлагающие беспроводной доступ. Те, кто находятся рядом с вредоносной точкой доступа, обнаруживают более мощный сигнал, и, скорее всего, выполнят ассоциацию с точкой доступа «злой двойник». Теперь пользовательский трафик отправляется на постороннюю точку доступа, которая, в свою очередь, захватывает данные и пересылает их на надежную точку доступа. Обратный трафик от санкционированной точки доступа отправляется на вредоносную точку доступа, захватывается, а затем пересылается ничего не подозревающей станции (STA). Злоумышленник может украсть пароль пользователя, личную информацию, получить доступ к сети и скомпрометировать систему пользователя.

Например, на рис. 1 злоумышленник находится в кафе «Латте Боба» и пытается захватить трафик от ничего не подозревающих беспроводных клиентов. Злоумышленник запускает программное обеспечение, которое делает его ноутбук точкой доступа типа «злой двойник», имеющей то же имя SSID и канал, что и санкционированный беспроводной маршрутизатор.

На рис. 2 пользователь видит два доступных беспроводных подключения, но выбирает для ассоциации точку доступа «злой двойник». Злоумышленник захватывает пользовательские данные и пересылает их на санкционированную точку доступа, которая, в свою очередь, направляет ответный трафик обратно на точку доступа «злой двойник». Точка доступа «злой двойник» захватывает ответный трафик и пересылает данные ничего не подозревающему пользователю.

Успешность предотвращения атаки с перехватом зависит от сложности инфраструктуры сети WLAN и тщательности мониторинга сети. Процесс начинается с определения санкционированных устройств в сети WLAN. Для этого пользователи должны пройти аутентификацию. После того, как определены все санкционированные устройства, можно выполнить мониторинг сети на предмет наличия подозрительных устройств или трафика.

Корпоративные сети WLAN, в которых используются самые современные устройства WLAN, предоставляют администраторам инструменты, которые в комплексе работают, как беспроводная система предотвращения вторжения (IPS). К таким инструментам относятся сканеры, с помощью которых выявляются вредоносные точки доступа и одноранговые сети, а также инструменты управления радиоресурсами, которые осуществляют мониторинг радиочастотной полосы на предмет активности и загрузки точки доступа. Большая нагрузка на точку доступа сигнализирует администратору о возможном наличии несанкционированного трафика.

Обзор безопасности беспроводной сети

Безопасность сети Wi-Fi всегда вызывала особое беспокойство, поскольку границы сети расширились. Сигналы беспроводной связи могут передаваться через твердые препятствия - потолки, полы, стены, за пределы дома или офиса. Без строгих мер безопасности установка сети WLAN - сродни повсеместному размещению Ethernet-портов, даже на улице.

Чтобы предотвратить угрозы со стороны злоумышленников, пытающихся проникнуть в беспроводную сеть, и защитить данные, использовались две функции обеспечения безопасности.

· Сокрытие идентификатора SSID . Точки доступа и некоторые беспроводные маршрутизаторы позволяют отключить кадр сигнала идентификатора SSID. Беспроводные клиенты должны вручную определить имя SSID, чтобы подключиться к сети.

· Фильтрация MAC-адресов . Администратор может вручную разрешить или запретить клиентам беспроводной доступ в зависимости от MAC-адреса их физического оборудования.

Хотя эти две функции отсеивают большинство пользователей, на самом деле ни сокрытие идентификатора SSID, ни фильтрация MAC-адресов не помешают умелому взломщику. Имена SSID легко обнаружить даже в том случае, если точки доступа не выполняют их широковещательную рассылку, а MAC-адреса можно подделать. Оптимальным способом защиты беспроводной сети является использование систем аутентификации и шифрования (см. рис. 1).

В исходном стандарте 802.11 представлено два типа аутентификации:

· Аутентификация открытой системы . Все беспроводные клиенты могут легко выполнить подключение, и такая система может использоваться только в тех случаях, когда безопасность не имеет особого значения (например, в местах, где предоставляется бесплатный доступ к Интернету - кафе, отели и удалённые расположения).

· Аутентификация согласованного ключа . Для аутентификации и шифрования данных, передаваемых между беспроводным клиентом и точкой доступа, предоставляет такие механизмы, как WEP, WPA или WPA2 . Однако для подключения пароль необходимо предварительно согласовать между сторонами.

На схеме на рис. 2 представлены краткие сведения о различных типах аутентификации.

Методы аутентификации согласованного ключа

Как показано на рис. 1, доступны три варианта аутентификации согласованного ключа:

· Протокол шифрования беспроводной связи (WEP) . Исходная спецификация 802.11, которая разработана для обеспечения конфиденциальности на уровне, сопоставимом с проводным подключением. Защита данных обеспечивается посредством метода шифрования RC4 с использованием статического ключа. Однако ключ никогда не изменяется при передаче пакетов, поэтому его достаточно легко взломать.

· Защищённый доступ к Wi-Fi (WPA) . Стандарт Wi-Fi Alliance, который использует WEP, но обеспечивает защиту данных за счёт гораздо более надежного алгоритма шифрования с использованием временных ключей (TKIP). TKIP изменяет ключ для каждого пакета, поэтому его гораздо сложнее взломать.

· IEEE 802.11i/WPA2 . Стандарт IEEE 802.11i является отраслевым стандартом безопасности беспроводных сетей. Версия Wi-Fi Alliance называется WPA2. 802.11i и WPA2 используют для шифрования усовершенствованный стандарт шифрования (AES). В настоящее время AES считается самым надежным протоколом шифрования.

Использовать WEP уже не рекомендуется. Общие ключи WEP показали свою несостоятельность, и, следовательно, их не следует использовать. Чтобы компенсировать слабые стороны общих ключей WEP, компании сначала пытались скрывать идентификаторы SSID и фильтровать MAC-адреса. Эти методы также оказались слишком ненадежными.

Ввиду ненадежности систем безопасности на основе WEP, в течение некоторого времени использовались промежуточные меры безопасности. Такие поставщики, как Cisco, стремясь удовлетворить повышенные требования в отношении безопасности, разработали собственные системы, одновременно пытаясь усовершенствовать стандарт 802.11i. В процессе развития стандарта 802.11i был создан алгоритм шифрования TKIP, который был связан с методом обеспечения безопасности Wi-Fi Alliance WPA.

Современные беспроводные сети всегда должны использовать стандарт 802.11i/WPA2. WPA2 является версией Wi-Fi стандарта 802.11i, следовательно, термины WPA2 и 802.11i зачастую являются взаимозаменяемыми.

С 2006 года все устройства, на которые нанесен логотип Wi-Fi Certified, сертифицированы для использования WPA2.

Примечание . В целях оптимизации производительности, сети Wireless-N должны использовать режим безопасности WPA2-Personal.

В таблице на рис. 2 показаны общие сведения о трех типах методов аутентификации согласованных ключей.

Методы шифрования

Шифрование используется для защиты данных. Если злоумышленник выполнил захват зашифрованных данных, он не сможет их расшифровать за короткий срок.

Стандарты IEEE 802.11i, Wi-Fi Alliance WPA и WPA2 используют следующие протоколы шифрования:

· Шифрование с использованием временных ключей (TKIP) . TKIP является методом шифрования, который используется стандартом WPA. Он обеспечивает поддержку предыдущих версий оборудования сетей WLAN за счёт устранения исходных уязвимостей, характерных для метода шифрования 802.11 WEP. Он использует WEP, однако выполняет шифрование полезной нагрузки 2 уровня с использованием TKIP и выполняет проверку целостности сообщений в зашифрованном пакете, чтобы убедиться в том, что сообщение не используется несанкционированно.

· Усовершенствованный стандарт шифрования (AES) . AES является методом шифрования, который используется стандартом WPA2. Этот метод является предпочтительным, поскольку соответствует отраслевому стандарту IEEE 802.11i. AES выполняет те же функции, что и TKIP, но обеспечивает значительно более надежный метод шифрования. Он использует протокол CCMP, который позволяет узлам назначения распознавать зашифрованные и незашифрованные биты, используемые несанкционированно.

Примечание . По возможности всегда следует выбирать WPA2 с AES.

Пароль и фильтрация по MAC-адресу должны защитить вас от взлома. На самом деле безопасность в большей степени зависит от вашей осмотрительности. Неподходящие методы защиты, незамысловатый пароль и легкомысленное отношение к посторонним пользователям в домашней сети дают злоумышленникам дополнительные возможности для атаки. Из этой статьи вы узнаете, как можно взломать WEP-пароль, почему следует отказаться от фильтров и как со всех сторон обезопасить свою беспроводную сеть.

Защита от незваных гостей

Ваша сеть не защищена, следовательно, рано или поздно к вашей беспроводной сети подсоединится посторонний пользователь — возможно даже не специально, ведь смартфоны и планшеты способны автоматически подключаться к незащищенным сетям. Если он просто откроет несколько сайтов, то, скорее всего, не случиться ничего страшного кроме расхода трафика. Ситуация осложнится, если через ваше интернет-подключение гость начнет загружать нелегальный контент.

Если вы еще не предприняли никаких мер безопасности, то зайдите в интерфейс роутера через браузер и измените данные доступа к сети. Адрес маршрутизатора, как правило, имеет вид: http://192.168.1.1 . Если это не так, то вы сможете выяснить IP-адрес своего сетевого устройства через командную строку. В операционной системе Windows 7 щелкните по кнопке «Пуск» и задайте в строке поиска команду «cmd». Вызовите настройки сети командой «ipconfig» и найдите строку «Основной шлюз». Указанный IP - это адрес вашего роутера, который нужно ввести в адресной строке браузера. Расположение настроек безопасности маршрутизатора зависит от производителя. Как правило, они расположены в разделе с названием вида «WLAN | Безопасность».

Если в вашей беспроводной сети используется незащищенное соединение, следует быть особенно осторожным с контентом, который расположен в папках с общим доступом, так как в отсутствие защиты он находится в полном распоряжении остальных пользователей. При этом в операционной системе Windows XP Home ситуация с общим доступом просто катастрофическая: по умолчанию здесь вообще нельзя устанавливать пароли - данная функция присутствует только в профессиональной версии. Вместо этого все сетевые запросы выполняются через незащищенную гостевую учетную запись. Обезопасить сеть в Windows XP можно c помощью небольшой манипуляции: запустите командную строку, введите «net user guest ВашНовыйПароль» и подтвердите операцию нажатием клавиши «Enter». После перезагрузки Windows получить доступ к сетевым ресурсам можно будет только при наличии пароля, однако более тонкая настройка в этой версии ОС, к сожалению, не представляется возможной. Значительно более удобно управление настройками общего доступа реализовано в Windows 7. Здесь, чтобы ограничить круг пользователей, достаточно в Панели управления зайти в «Центр управления сетями и общим доступом» и создать домашнюю группу, защищенную паролем.

Отсутствие должной защиты в беспроводной сети является источником и других опасностей, так как хакеры могут с помощью специальных программ (снифферов) выявлять все незащищенные соединения. Таким образом, взломщикам будет несложно перехватить ваши идентификационные данные от различных сервисов.

Хакеры

Как и прежде, сегодня наибольшей популярностью пользуются два способа защиты: фильтрация по MAC-адресам и скрытие SSID (имени сети): эти меры защиты не обеспечат вам безопасности. Для того чтобы выявить имя сети, взломщику достаточно WLAN-адаптера, который с помощью модифицированного драйвера переключается в режим мониторинга, и сниффера - например, Kismet. Взломщик ведет наблюдение за сетью до тех пор, пока к ней не подключится пользователь (клиент). Затем он манипулирует пакетами данных и тем самым «выбрасывает» клиента из сети. При повторном подсоединении пользователя взломщик видит имя сети. Это кажется сложным, но на самом деле весь процесс занимает всего несколько минут. Обойти MAC-фильтр также не составляет труда: взломщик определяет MAC-адрес и назначает его своему устройству. Таким образом, подключение постороннего остается незамеченным для владельца сети.

Если ваше устройство поддерживает только WEP-шифрование, срочно примите меры - такой пароль за несколько минут могут взломать даже непрофессионалы.

Особой популярностью среди кибермошенников пользуется пакет программ Aircrack-ng, который помимо сниффера включает в себя приложение для загрузки и модификации драйверов WLAN-адаптеров, а также позволяет выполнять восстановление WEP-ключа. Известные методы взлома - это PTW- и FMS/KoreKатаки, при которых перехватывается трафик и на основе его анализа вычисляется WEP-ключ. В данной ситуации у вас есть только две возможности: сначала вам следует поискать для своего устройства актуальную прошивку, которая будет поддерживать новейшие методы шифрования. Если же производитель не предоставляет обновлений, лучше отказаться от использования такого устройства, ведь при этом вы ставите под угрозу безопасность вашей домашней сети.

Популярный совет сократить радиус действия Wi-Fi дает только видимость защиты. Соседи все равно смогут подключаться к вашей сети, а злоумышленники зачастую пользуются Wi-Fi-адаптерами с большим радиусом действия.

Публичные точки доступа

Места со свободным Wi-Fi привлекают кибермошенников, так как через них проходят огромные объемы информации, а воспользоваться инструментами взлома может каждый. В кафе, отелях и других общественных местах можно найти публичные точки доступа. Но другие пользователи этих же сетей могут перехватить ваши данные и, например, взять под свой контроль ваши учетные записи на различных веб-сервисах.

Защита Cookies. Некоторые методы атак действительно настолько просты, что ими может воспользоваться каждый. Расширение Firesheep для браузера Firefox автоматически считывает и отображает в виде списка аккаунты других пользователей, в том числе на Amazon, в Google, Facebook и Twitter. Если хакер щелкнет по одной из записей в списке, он сразу же получит полный доступ к аккаунту и сможет изменять данные пользователя по своему усмотрению. Firesheep не осуществляет взлом паролей, а только копирует активные незашифрованные cookies. Чтобы защититься от подобных перехватов, следует пользоваться специальным дополнением HTTPS Everywhere для Firefox. Это расширение вынуждает онлайн-сервисы постоянно использовать зашифрованное соединение через протокол HTTPS, если он поддерживается сервером поставщика услуг.

Защита Android. В недавнем прошлом всеобщее внимание привлекла недоработка в операционной системе Android, из-за которой мошенники могли получить доступ к вашим аккаунтам в таких сервисах, как Picasa и «Календарь Google», а также считывать контакты. Компания Google ликвидировала эту уязвимость в Android 2.3.4, но на большинстве устройств, ранее приобретенных пользователями, установлены более старые версии системы. Для их защиты можно использовать приложение SyncGuard.

WPA 2

Наилучшую защиту обеспечивает технология WPA2, которая применяется производителями компьютерной техники еще с 2004 года. Большинство устройств поддерживают этот тип шифрования. Но, как и другие технологии, WPA2 тоже имеет свое слабое место: с помощью атаки по словарю или метода bruteforce («грубая сила») хакеры могут взламывать пароли - правда, лишь в случае их ненадежности. Словари просто перебирают заложенные в их базах данных ключи - как правило, все возможные комбинации чисел и имен. Пароли наподобие «1234» или «Ivanov» угадываются настолько быстро, что компьютер взломщика даже не успевает нагреться.

Метод bruteforce предполагает не использование готовой базы данных, а, напротив, подбор пароля путем перечисления всех возможных комбинаций символов. Таким способом взломщик может вычислить любой ключ - вопрос только в том, сколько времени ему на это потребуется. NASA в своих инструкциях по безопасности рекомендует пароль минимум из восьми символов, а лучше - из шестнадцати. Прежде всего важно, чтобы он состоял из строчных и прописных букв, цифр и специальных символов. Чтобы взломать такой пароль, хакеру потребуются десятилетия.

Пока еще ваша сеть защищена не до конца, так как все пользователи внутри нее имеют доступ к вашему маршрутизатору и могут производить изменения в его настройках. Некоторые устройства предоставляют дополнительные функции защиты, которыми также следует воспользоваться.

Прежде всего отключите возможность манипулирования роутером через Wi-Fi. К сожалению, эта функция доступна лишь в некоторых устройствах - например, маршрутизаторах Linksys. Все современные модели роутеров также обладают возможностью установки пароля к интерфейсу управления, что позволяет ограничить доступ к настройкам.

Как и любая программа, прошивка роутера несовершенна - небольшие недоработки или критические дыры в системе безопасности не исключены. Обычно информация об этом мгновенно распространяется по Сети. Регулярно проверяйте наличие новых прошивок для вашего роутера (у некоторых моделей есть даже функция автоматического обновления). Еще один плюс перепрошивок в том, что они могут добавить в устройство новые функции.

Периодический анализ сетевого трафика помогает распознать присутствие незваных гостей. В интерфейсе управления роутером можно найти информацию о том, какие устройства и когда подключались к вашей сети. Сложнее выяснить, какой объем данных загрузил тот или иной пользователь.

Гостевой доступ — средство защиты домашней сети

Если вы защитите роутер надежным паролем при использовании шифрования WPA2, вам уже не будет угрожать никакая опасность. Но только до тех пор, пока вы не передадите свой пароль другим пользователям. Друзья и знакомые, которые со своими смартфонами, планшетами или ноутбуками захотят выйти в Интернет через ваше подключение, являются фактором риска. Например, нельзя исключать вероятность того, что их устройства заражены вредоносными программами. Однако из-за этого вам не придется отказывать друзьям, так как в топовых моделях маршрутизаторов, например Belkin N или Netgear WNDR3700, специально для таких случаев предусмотрен гостевой доступ. Преимущество данного режима в том, что роутер создает отдельную сеть с собственным паролем, а домашняя не используется.

Надежность ключей безопасности

WEP (WIRED EQUIVALENT PRIVACY). Использует генератор псевдослучайных чисел (алгоритм RC4) для получения ключа, а также векторы инициализации. Так как последний компонент не зашифрован, возможно вмешательство третьих лиц и воссоздание WEP-ключа.

WPA (WI-FI PROTECTED ACCESS) Основывается на механизме WEP, но для расширенной защиты предлагает динамический ключ. Ключи, сгенерированные с помощью алгоритма TKIP, могут быть взломаны посредством атаки Бека-Тевса или Охигаши-Мории. Для этого отдельные пакеты расшифровываются, подвергаются манипуляциям и снова отсылаются в сеть.

WPA2 (WI-FI PROTECTED ACCESS 2) Задействует для шифрования надежный алгоритм AES (Advanced Encryption Standard). Наряду с TKIP добавился протокол CCMP (Counter-Mode/CBC-MAC Protocol), который также базируется на алгоритме AES. Защищенную по этой технологии сеть до настоящего момента взломать не удавалось. Единственной возможностью для хакеров является атака по словарю или «метод грубой силы», когда ключ угадывается путем подбора, но при сложном пароле подобрать его невозможно.

Проблемы безопасности беспроводных сетей, описанные в ряде статей, спровоцировали недоверие к беспроводным технологиям. Насколько оно оправданно?

Почему беспроводные сети считаются более уязвимыми, чем кабельные? В проводных сетях данные могут быть перехвачены только в том случае, если злоумышленник получит физический доступ к среде передачи. В беспроводных сетях сигнал распространяется в эфире, поэтому любой, находящийся в зоне действия сети, может перехватить этот сигнал.

Злоумышленнику даже не обязательно пребывать на территории компании, достаточно попасть в зону распространения радиосигнала.

Угрозы беспроводным сетям

Готовясь к обеспечению безопасности беспроводных сетей, прежде всего необходимо установить, что может им угрожать.

Пассивная атака

Перехват сигналов беспроводной сети аналогичен прослушиванию радиопередачи. Достаточно иметь ноутбук (или КПК) и анализатор беспроводных протоколов. Широко распространено заблуждение, что несанкционированное подключение к беспроводной сети вне офиса можно пресечь, контролируя выходную мощность сигнала. Это не так, поскольку использование злоумышленником беспроводной карты повышенной чувствительности и направленной антенны позволяет легко преодолеть данную меру предосторожности.

Даже уменьшив вероятность несанкционированного подключения к сети, не следует оставлять без внимания возможность «прослушивания» трафика, поэтому для безопасной работы в беспроводных сетях необходимо шифровать передаваемую информацию.

Активная атака

Опасно подключать незащищенную беспроводную сеть к кабельной сети. Незащищенная точка доступа, подсоединенная к локальной сети, представляет собой широко открытую дверь для злоумышленников. Для предприятий это чревато тем, что конкуренты могут получить доступ к конфиденциальным документам. Незащищенные беспроводные сети позволяют хакерам обойти межсетевые экраны и настройки безопасности, которые защищают сеть от атак через Internet. В домашних сетях злоумышленники могут получить бесплатный доступ к Internet за счет своих соседей.

Следует отслеживать и выявлять неконтролируемые точки доступа, подключенные к сети несанкционированно. Подобные точки, как правило, устанавливают сами сотрудники предприятия. (Например, менеджер отдела продаж приобрел беспроводную точку доступа и использует ее, чтобы все время оставаться на связи.) Такая точка может быть специально подключена к сети злоумышленником с целью получения доступа к сети компании вне офиса.

Следует помнить о том, что уязвимыми являются как подключенные к беспроводной сети компьютеры, так и те, в которых есть включенная беспроводная карта с настройками по умолчанию (она, как правило, не блокирует проникновение через беспроводную сеть). Например, пока пользователь, ожидающий своего рейса, просматривает ресурсы Internet через развернутую в аэропорту сеть Wi-Fi, хакер, сидящий неподалеку, изучает информацию, хранящуюся на компьютере мобильного сотрудника. Аналогичным атакам могут подвергнуться пользователи, работающие посредством беспроводных сетей в помещениях кафе, выставочных центров, холлах гостиниц и пр.

Поиск доступных беспроводных сетей

Для активного поиска уязвимых беспроводных сетей (War driving) обычно используется автомобиль и комплект беспроводного оборудования: небольшая антенна, беспроводная сетевая карта, переносной компьютер и, возможно, GPS-приемник. Используя широко распространенные программы-сканеры, такие как Netstumbler, можно легко найти зоны приема беспроводных сетей.

Поклонники War Driving имеют много способов обмениваться информацией. Один из них (War Chalking) подразумевает нанесение на схемах и картах символов, указывающих на обнаруженные беспроводные сети. Эти обозначения содержат сведения о величине радиосигнала, наличии той или иной разновидности защиты сети и о возможности доступа в Internet. Любители такого «спорта» обмениваются информацией через Internet-сайты, «вывешивая», в частности, подробные карты с месторасположением обнаруженных сетей. Кстати, полезно проверить, нет ли там вашего адреса.

Отказ в обслуживании

Бесплатный доступ в Internet или корпоративную сеть не всегда является целью злоумышленников. Иногда задачей хакеров может быть вывод из строя беспроводной сети.

Атака «отказ в обслуживании» может быть достигнута несколькими способами. Если хакеру удается установить соединение с беспроводной сетью, его злонамеренные действия могут вызвать ряд таких серьезных последствий: например, рассылку ответов на запросы протокола разрешения адресов (Address Resolution Protocol, ARP) для изменения ARP-таблиц сетевых устройств с целью нарушения маршрутизации в сети или внедрение несанкционированного сервера протокола динамической конфигурации хостов (Dynamic Host Configuration Protocol, DHCP) для выдачи неработоспособных адресов и масок сетей. Если хакер выяснит подробности настроек беспроводной сети, то сможет переподключить пользователей на свою точку доступа (см. рисунок), а последние окажутся отрезанными от сетевых ресурсов, которые были доступны через «законную» точку доступа.

Внедрение несанкционированной точки доступа.

Злоумышленник может также заблокировать частоты, используемые беспроводными сетями, применяя для этого генератор сигналов (его можно изготовить из деталей микроволновой печи). В результате вся беспроводная сеть или ее часть выйдут из строя.

Меры безопасности в стандартах IEEE 802.11

Оригинальный стандарт 802.11 предусматривает для обеспечения безопасности беспроводных сетей использование стандарта «конфиденциальности, эквивалентной проводной» (Wired Equivalent Privacy, WEP). Беспроводные сети, использующие WEP, требуют настройки статического WEP-ключа на точках доступа и всех станциях. Этот ключ может использоваться для аутентификации и шифрования данных. При его компрометации (например, в случае утери переносного компьютера) необходимо сменить ключ на всех устройствах, что подчас весьма затруднительно. При использовании ключей WEP для аутентификации беспроводные станции посылают точке доступа соответствующий запрос, получая в ответ незашифрованное сообщение (clear text challenge). Клиент должен его зашифровать, используя свой WEP-ключ, и вернуть точке доступа, которая расшифрует сообщение с помощью собственного WEP-ключа. Если расшифрованное сообщение совпадает с оригинальным, то это обозначает, что клиент знает WEP-ключ. Следовательно, аутентификация считается успешной, и клиенту отправляется соответствующее уведомление.

Успешно завершив аутентификацию и ассоциацию, беспроводное устройство может использовать WEP-ключ для шифрования трафика, передаваемого между устройством и точкой доступа.

Стандарт 802.11 определяет и другие механизмы контроля доступа. Точка доступа может использовать фильтрацию по аппаратным адресам (Media Access Control, MAC), предоставляя или запрещая доступ на основе MAC-адреса клиента. Данный метод затрудняет, но не предотвращает подключение несанкционированных устройств.

Насколько безопасен WEP?

Одно из правил криптографии гласит: имея открытый текст и его зашифрованную версию, можно установить использованный метод шифрования. Это особенно актуально при использовании слабых алгоритмов шифрования и симметричных ключей, такие, например, предусматривает WEP.

Этот протокол использует для шифрования алгоритм RC4. Слабость его состоит в том, что если зашифровать известный открытый текст, то на выходе получится ключевой поток, который использовался для шифрования данных. Согласно стандарту 802.11, ключевой поток состоит из WEP-ключа и 24-разрядного вектора инициализации. Для каждого пакета используется следующий вектор, который отправляется в открытом виде вместе с пакетом, так что принимающая станция может использовать его совместно с WEP-ключом, чтобы расшифровать пакет.

Если получить один ключевой поток, то можно расшифровать любой пакет, зашифрованный тем же самым вектором. Так как вектор меняется для каждого пакета, то для расшифровки нужно дождаться следующего пакета, использующего тот же самый вектор. Чтобы иметь возможность расшифровывать WEP, необходимо собрать полный комплект векторов и ключевых потоков. Утилиты по взлому WEP работают именно таким образом.

Добыть открытый и зашифрованный текст можно в процессе аутентификации клиента. Перехватывая трафик на протяжении некоторого времени, можно набрать необходимое количество исходных данных для проведения атаки. Чтобы скопить необходимые для анализа данные, хакеры используют и множество других методов, включая атаки типа «men in the middle».

Когда принималось решение о формате фрейма для беспроводных сетей, IEEE предложила свой собственный формат под названием Subnetwork Address Protocol (SNAP).

Два байта, следующие за MAC-заголовком во фрейме SNAP стандарта 802.11, всегда имеют значение «AA AA». Протокол WEP шифрует все байты, следующие за MAC-заголовком, поэтому для первых двух зашифрованных байт всегда известен открытый текст («АА АА»). Этот путь предоставляет возможность получить фрагменты зашифрованного и открытого сообщения.

В Internet бесплатно распространяются утилиты для взлома WEP. Самые известные из них - AirSnort и WEPCrack. Для успешного взлома WEP-ключа с их помощью достаточно набрать от 100 тыс. до 1 млн. пакетов. Новые утилиты Aircrack и Weplab для взлома WEP-ключей реализуют более эффективный алгоритм, при котором требуется существенно меньше пакетов. По этой причине протокол WEP является ненадежным.

Беспроводные технологии становятся безопаснее

Сегодня многие компании используют удобные и безопасные беспроводные сети. Стандарт 802.11i поднял безопасность на качественно новый уровень.Рабочая группа IEEE 802.11i, в задачу которой входило создание нового стандарта безопасности беспроводных сетей, была сформирована после изучения сведений об уязвимости протокола WEP. На разработку потребовалось некоторое время, поэтому большинство производителей оборудования, не дождавшись выхода нового стандарта, стали предлагать свои методы (см. ). В 2004 году появился новый стандарт, тем не менее, поставщики оборудования по инерции продолжают использовать старые решения.

802.11i определяет использование стандарта расширенного шифрования (Advanced Encryption Standard, AES) вместо WEP. В основе AES лежит реализация алгоритма Рендела, который большинство криптоаналитиков признает стойким. Этот алгоритм существенно лучше своего слабого предшественника RC4, который используется в WEP: он предусматривает использование ключей длиной 128, 192 и 256 разрядов, вместо 64 бит, используемых в оригинальном стандарте 802.11. Новый стандарт 802.11i также определяет использование TKIP, CCMP и 802.1x/EAP.

EAP-MD5 подтверждает подлинность пользователя путем проверки пароля. Вопрос использования шифрования трафика отдан на откуп администратору сети. Слабость EAP-MD5 заключается в отсутствии обязательного использования шифрования, поэтому EAP-MD5 допускает возможность атаки типа «men in the middle».

Протокол «легковесный EAP» (Lightweight EAP, LEAP), который создала компания Cisco, предусматривает не только шифрование данных, но и ротацию ключей. LEAP не требует наличия ключей у клиента, поскольку они безопасно пересылаются после того, как пользователь прошел аутентификацию. Это позволяет пользователям легко подключаться к сети, используя учетную запись и пароль.

Ранние реализации LEAP обеспечивали только одностороннюю аутентификацию пользователей. Позднее Cisco добавила возможность взаимной аутентификации. Однако выяснилось, что протокол LEAP уязвим к атакам по словарю. Сотрудник американского Института системного администрирования, телекоммуникаций и безопасности (SANS) Джошуа Райт разработал утилиту ASLEAP, которая осуществляет подобную атаку, после чего компания Cisco рекомендовала использовать сильные пароли длиной не менее восьми знаков, включая спецсимволы, символы верхнего, нижнего регистра и цифры. LEAP безопасен в той мере, насколько стоек пароль к попыткам подбора.

Более сильный вариант реализации EAP - EAP-TLS, который использует предустановленные цифровые сертификаты на клиенте и сервере, был разработан в Microsoft. Этот метод обеспечивает взаимную аутентификацию и полагается не только на пароль пользователя, но также поддерживает ротацию и динамическое распределение ключей. Неудобство EAP-TLS заключается в необходимости установки сертификата на каждом клиенте, что может оказаться достаточно трудоемкой и дорогостоящей операцией. К тому же этот метод непрактично использовать в сети, где часто меняются сотрудники.

Производители беспроводных сетей продвигают решения упрощения процедуры подключения к беспроводным сетям авторизированных пользователей. Эта идея вполне осуществима, если включить LEAP и раздать имена пользователей и пароли. Но если возникает необходимость использования цифрового сертификата или ввода длинного WEP-ключа, процесс может стать утомительным.

Компании Microsoft, Cisco и RSA совместными усилиями разработали новый протокол - PEAP, объединивший простоту использования LEAP и безопасность EAP-TLS. PEAP использует сертификат, установленный на сервере, и аутентификацию по паролю для клиентов. Аналогичное решение - EAP-TTLS - выпустила компания Funk Software.

Разные производители поддерживают различные типы EAP, а также несколько типов одновременно. Процесс EAP аналогичен для всех типов.

Типовые операции EAP

Что такое WPA

После того, как беспроводные сети были объявлены небезопасными, производители приступили к реализации собственных решений по обеспечению безопасности. Это поставило компании перед выбором: использовать решение одного производителя или дожидаться выхода стандарта 802.11i. Дата принятия стандарта была неизвестна, поэтому в 1999 году был сформирован альянс Wi-Fi. Его целью являлась унификация взаимодействия беспроводных сетевых продуктов.

Альянс Wi-Fi утвердил протокол защищенного беспроводного доступа (Wireless Protected Access, WPA), рассматривая его как временное решение до выхода стандарта 802.11i. Протокол WPA предусматривает использование стандартов TKIP и 802.1x/EAP. Любое оборудование Wi-Fi, сертифицированное на совместимость с WPA, обязано работать совместно с другим сертифицированным оборудованием. Поставщики могут использовать и свои собственные механизмы обеспечения безопасности, но должны в любом случае включать поддержку стандартов Wi-Fi.

После первоначального объявления параметров 802.11i альянс Wi-Fi создал стандарт WPA2. Любое оборудование, которое имеет сертификат WPA2, полностью совместимо с 802.11i. Если беспроводная сеть предприятия не поддерживает стандарт 802.11i, то для обеспечения адекватной безопасности следует как можно быстрее перейти на 802.11i.

Что такое фильтрация MAC-адресов?

Если WEP небезопасен, то сможет ли защитить беспроводную сеть фильтрация аппаратных адресов (Media Access Control, MAC)? Увы, фильтры МАС-адресов предназначены для предотвращения несанкционированных подключений, против перехвата трафика они бессильны.

Фильтрация МАС-адресов не оказывает заметного влияния на безопасность беспроводных сетей. Она требует от злоумышленника лишь одного дополнительного действия: узнать разрешенный MAC-адрес. (Кстати, большинство драйверов сетевых карт позволяют его поменять.)

Насколько легко узнать разрешенный MAC-адрес? Чтобы получить работающие МАС-адреса, достаточно в течение некоторого времени следить за беспроводным трафиком с помощью анализатора протоколов. МАС-адреса можно перехватить, даже если трафик шифруется, поскольку заголовок пакета, который включает такой адрес, передается в открытом виде.

Протокол TKIP

Временный протокол обеспечения целостности ключа (Temporal Key Integrity Protocol, TKIP) разработан для устранения недостатков, присущих протоколу WEP. Стандарт TKIP улучшает безопасность WEP благодаря ротации ключей, использованию более длинных векторов инициализации и проверки целостности данных.

Программы для взлома WEP используют слабость статических ключей: после перехвата необходимого числа пакетов они позволяют легко расшифровать трафик. Регулярная смена ключей предотвращает этот тип атак. TKIP динамически меняет ключи через каждые 10 тыс. пакетов. Поздние реализации протокола позволяют менять интервал ротации ключей и даже установить алгоритм смены ключа шифрования для каждого пакета данных (Per-Packet Keying, PPK).

Ключ шифрования, применяемый в TKIP, стал более надежным по сравнению с WEP-ключами. Он состоит из 128-разрядного динамического ключа, к которому добавляется MAC-адрес станции и 48-разрядный вектор инициализации (в два раза длиннее оригинального вектора стандарта 802.11). Этот метод известен как «ключевое смешивание» и дает уверенность в том, что любые две станции не используют один и тот же ключ.

В протокол также встроен метод гарантированного обеспечения целостности данных (Message Integrity Cheek, MIC, называемый также Michael).




Top