Формула вычисления определителя n го порядка. Перестановки и подстановки. Методы вычисления определителей n-го порядка

Методы вычисления определителей n – го порядка 1. Метод приведения к треугольному виду Этот метод заключается в преобразовании определителя к такому виду, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю. Пример 1. Вычислить определитель порядка n d= 01 01 01 01 11110 xxx xxx xxx xxx . Решение. Прибавим первую строку, умноженную на (– x) ко всем остальным: d= x x x x − − − − 0001 0001 0001 0001 11110 . К первому столбцу прибавим все последующие столбцы, умноженные на (1/x). Получим d= . 0000 0000 0000 0000 1111)1(x x x x x n − − − − − Мы получили треугольный вид, следовательно, определитель равен произведению элементов главной диагонали d=(– 1) n – 1 (n – 1)x n – 2 . Пример 2. Вычислить определитель 2221 2212 2122 1222 − − − − =d . Решение. Прибавим к первой строке все остальные, тогда в первой строке все элементы будут равны 2(n – 1) – 1=2n – 3 и, следовательно, общий множитель можно вынести за знак определителя: . 2221 2212 2122 1111)32(− − − −= nd Теперь воспользуемся тем, что в первой строке все элементы равны 1. Умножая первую строку на (– 2) и прибавляя её ко всем остальным строкам, мы получим. 0003 0030 0300 1111)32(− − − −= nd Побочная диагональ в определитель n-го порядка входит со знаком 2)1()1(− − nn (это легко проверить, если подсчитать число инверсий в подста- новке −− 1...21 ...321 nnn n). Тогда получим () ()() () () .32313321 1 1 2)1(1 2)1(−−=−−−= − − + − − nnd n nn n nn Пример 3. Вычислить определитель. 000 00330 00022 1321 nn nn d − − − − = Решение. Прибавим к (n – 1)-му столбцу n-ый, затем полученный (n – 1)-ый столбец прибавим к (n – 2)-му, и т. д. Тогда получим определитель треугольного вида. 2)1(! 0000 00300 00020 123 2)1(1 2)1(2)1(+ = −− + − ++ = nn n n nn nnnnnn d 2. Разложение определителя по строке (столбцу) Пример 1. Вычислить определитель d разложением по третьей строке, если d= 2164 7295 4173 2152 − −− −− − . Решение. Мы знаем, что имеет место, следующее разложение определителя по i-ой строке: d=a i1 A i1 +a i2 A i2 +…+a in A in , где A ij , j= n,1 – алгебраические дополнения элементов определителя. В нашем случае формула принимает вид d=a 31 A 31 +a 32 A 32 +a 33 A 33 +a 34 A 34 , т. е. мы имеем следующее разложение: d=5∙ (– 1) 3+1 ∙ 216 417 215 − − − +(– 9)∙(– 1) 3+2 ∙ 214 413 212 −− +2∙(– 1) 3+3 ∙ 264 473 252 − − − + + (-7)∙ (– 1) 3+4 ∙ 164 173 152 − −− − . Вычисляя полученные определители третьего порядка, получим d=5∙(– 6)+9∙12+2∙(– 54) + 7∙(– 3)= –51. Пример 2. Вычислить определитель d= 78102 4552 5882 6593 −−− . Решение. Прибавляя третью строку, умноженную на (– 1) ко всем остальным, получим d= 3350 4552 913130 2041 −−− . Прибавляя к третьей строке первую, умноженную на (– 2), получим d= 3350 0530 913130 2091 − −−− . Разложив этот определитель по первому столбцу, содержащему лишь один, не равный нулю элемент (с суммой индексов 1+1=2, т. е. чётной), получим d= 335 053 91313 − −−− . Преобразуем полученный определитель. Прибавляя к первой строке третью, умноженную на 3, получим d= 335 053 042 − − . Полученный определитель в третьем столбце содержит лишь один, не равный нулю элемент (с суммой индексов 3+3, т. е. чётной). Поэтому его удобно разложить по третьему столбцу: d=3 53 42 − − =3(10 – 12)= – 6. Пример 3. Вычислить определитель. 000 11000 00300 00220 00011 nn nn d − −− − − = Решение. Разложим определитель по 1-му столбцу, тогда () () () . 1100 0030 0022 0001 1 000 1100 0030 0022 1 12 nn n n nn d n −− − − −−+ −− − −= + В этом равенстве первый и второй определители имеют треугольный вид, поэтому первый определитель равен n!, а второй определитель равен (– 1)(– 2) . . . (1 – n)=(– 1) n–1 (n – 1)!. Тогда получим: () () () .011!1!! 1212 =−+=−+= +−++ nnn nnnd 3. Теорема Лапласа Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1≤k≤n – 1. Тогда сумма произведений всех миноров k – го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d. Пример 1. Пользуясь теоремой Лапласа, вычислить определитель, предварительно преобразовав его. d= 43220 50300 20100 34523 12532 − − −− −− . Выберем третью и четвёртую строки. В них находится единственный минор отличный от нуля, поэтому d= 53 21 − ∙(– 1) 3+4+4+5 ∙ 320 423 232 − −− . Воспользовавшись формулами для вычисления определителей второго и третьего порядков, получим d=12–12+16+27=43. Пример 2. Вычислить определитель. 005000 050000 500000 000500 000010 000001 − = d Решение. Данный определитель имеет вид, указанный в следствии из теоремы Лапласа, поэтому мы можем этим следствием воспользоваться. Тогда () .51 005 050 500 ,5 500 010 001 3 2)4)(3(3 − −− − −==−=−= n nn n BA По следствию из теоремы Лапласа имеем: () .51 2 2 147 2 − +− −== n nn BAd 4. Метод выделения линейных множителей Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, обнаруживают, что он делится на ряд линейных множителей, а значит (если эти множители взаимно просты) и на их произведение. Сравнивая отдельные члены определителя с членами произведения линейных множителей, находят частное от деления определителя на это произведение и тем самым находят выражение определителя. Пример. Вычислить определитель методом линейных множителей d= 2 2 9132 5132 32x-21 3211 x − . Решение. Прибавим к первой строке вторую, умноженную на (– 1), а к третьей – четвёртую, умноженную на (– 1): d= 2 2 2 2 9132 4000 32x-21 0010 x x x − − − . Воспользуемся тем, что в первой строке и в третьей строке стоит лишь по одному неравному нулю элементу, и обнулим элементы стоящие во втором и третьем столбцах: d= 0102 4000 0201 0010 2 2 − − x x . Прибавим ко второй строке четвёртую, тогда d= 0102 4000 0303 0010 2 2 − − x x . Из первой строки видно, что определитель делится на x 2 – 1, из второй строки видно, что определитель делится на 3, а из третьей строки видно, что он делится на x 2 – 4. Так как все эти множители взаимно просты, то определитель делится на их произведение 3(x 2 – 1)(x 2 – 4). В данном произведении член x 4 имеет знак «+», а в определителе он содержится со знаком « – », поэтому d= – 3(x 2 – 1)(x 2 – 4). 5. Метод представления определителя в виде суммы определителей Некоторые определители легко вычисляются путём разложения их в сумму определителей того же порядка относительно строк или столбцов. Пример. Вычислить определитель d= add acc abb aaa 42 32 22 12 + + + + . Элементы первого столбца являются суммами двух слагаемых, это даёт возможность данный определитель представить как сумму двух определителей: d= ad ac ab aa 42 32 22 12 + add acc abb aaa 4 3 2 1 . В первом определителе первый и четвёртый столбцы пропорциональны, следовательно, он равен нулю. Во втором определителе первый и третий столбцы равны, следовательно, он тоже равен нулю. Таким образом, d=0. 6. Метод изменения элементов определителя Этот метод основан на следующем свойстве: если ко всем элементам определителя D прибавить одно и то же число x, то определитель увеличится на произведение числа x на сумму алгебраических дополнений всех элементов определителя D. D′=D+x = n ji ij A 1, . Таким образом, вычисление определителя D′ сводится к вычислению определителя D и суммы его алгебраических дополнений. Этот метод применяют в тех случаях, когда путём изменения всех элементов определителя на одно и то же число он приводится к такому виду, в котором легко сосчитать алгебраические дополнения всех элементов. Пример. Вычислить определитель D= n axxxx xaxx xxax xxxa 3 2 1 . Прибавим ко всем элементам число (– x), тогда D′= xa xa xa xa n − − − − 0000 000 000 000 3 2 1 . Алгебраические дополнения элементов определителя D, не лежащих на главной диагонали, равны нулю. Остальные алгебраические дополнения имеют положительный знак, поскольку все суммы индексов чётные. В нашем случае формула принимает вид: D′=(a 1 – x)…(a n – x), x = n ji ij A 1, = – x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − . Тогда искомый определитель D=D′–x = n ji ij A 1, =(a 1 – x)…(a n – x)+x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − = =x(a 1 – x)(a 2 – x)…(a n – x) − +…+ − + xaxax n 111 1 . 7. Метод рекуррентных соотношений Этот метод заключается в том, что данный определитель выражают, преобразуя и разлагая его по строке или столбцу, через определители того же вида, но более низкого порядка. Полученное равенство называется рекуррентным соотношением. Этот метод используется для вычисления определителей вида.)(000 00 0 00 21 −− −+= + + + + = nnn DDD αββα βα βαα ββαα ββα D n – (α+β)D n – 1 +αβD n – 2 =0 или, в общем виде D n – pD n – 1 +qD n – 2 =0, где p=α+β, q=αβ. Пусть рекуррентное соотношение имеет вид: D n =pD n – 1 – qD n – 2 , n>2, (5) где p, q – постоянные не зависящие от n. При q=0 D n вычисляется как член геометрической прогрессии: D n =p 1 − n D 1 ; здесь D 1 – определитель 1 – го порядка данного вида, т. е. элемент определителя D n , стоящий в левом верхнем углу. Пусть q>0 и α, β – корни квадратного уравнения x 2 – px+q=0. Тогда р=α+β, q=αβ и равенство (5) можно переписать так: D n – αD n – 1 =β (D n – 1 – αD n – 2) (6) или D n – βD n – 1 =α(D n – 1 – βD n – 2). (7) Предположим сначала, что α≠β. По формуле (n – 1) – го члена геометрической прогрессии находим из равенств (6) и (7): D n – αD n – 1 =β 2 − n (D 2 – αD 1) и D n – βD n – 1 =α 2 − n (D 2 – βD 1). Откуда.)()(12 1 12 1 βα αββα − −−− = −− DDDD D nn n (8) Пусть теперь α=β. Равенства (6) и (7) обращаются в одно и то же D n – αD n – 1 =α (D n – 1 – αD n – 2), откуда D n – αD n – 1 =Aα 2 − n , (9) где A=D 2 – αD 1 . Заменяя здесь n на n – 1, получим: D n – 1 – αD n – 2 =Aα 3 − n , откуда D n – 1 =αD n – 2 +Aα 3 − n . Подставляя это выражение в равенство (9), найдём D n =α 2 D n – 2 +2Aα 2 − n . Повторяя тот же приём несколько раз, получим D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 . Пример 1. Вычислить определитель методом рекуррентных соотношений. d= 21...0000 12...0000 ..................... 00...2100 00...1210 00...0121 00...0012 . Решение. Разложим определитель по первой строке, тогда D n =2(– 1) 1+1 D n – 1 +(– 1) 2+1 2...000 ............... 0...210 0...120 0...011 . Определитель в последнем равенстве разложим по первому столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =2, D 2 =3, тогда A=3 – 2=1. Следовательно, D n =2+(n – 1)=n+1. Пример 2. Вычислить определитель методом рекуррентных соотношений: d= 210...000 121...000 012...000 ..................... 000...210 000...122 000...043 . Решение. Разлагая d по последней строке, получим D n =2(– 1) nn + D n – 1 +(– 1))1(−+ nn 110...000 021...000 012...000 ..................... 000...210 000...122 000...043 . Определитель в последнем равенстве разложим по (n – 1) – му столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n = α n – 1 D 1 +(n – 1)Aα n – 2 , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =3, D 2 = – 2, тогда A= – 5. Следовательно, D n =3+(n – 1)(– 5)=8 – 5n. 8. Определитель Вандермонда Определителем Вандермонда называется определитель вида. 1111 11 3 1 2 1 1 22 3 2 2 2 1 321 −−−− = n n nnn n n aaaa aaaa aaaa d Докажем, что при любом n определитель Вандермонда равен произведению всевозможных разностей a i – a j , где 1≤j

Пусть дана матрица

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

Определение: Рассмотрим перестановку:

Поменяем местами и, получим перестановку:

Говорят, что перестановка В получается из А транспозицией элементов и.

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с, ..., затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно .

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно: . Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.



Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

Докажем, что определитель равен определителю А. ().

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки: , а знак перед этим же слагаемым в определяется с помощью подстановки

Эти подстановки различной четности.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №8 (2 семестр)

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

Определение: Дана матрица

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами , где . Сумма произведений всевозможных миноров k-того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.

Рассмотрим квадратную таблицу А.

Определение. Определителем n-го порядка называется число, полученное из элементов данной таблицы по следующему правилу:

1 .Определитель n-го порядка равен алгебраической сумме n! членов.

Каждый член представляет собой произведение n-элементов взятых по одному из каждой строки и каждого столбца таблицы.

2 .Член берется со знаком плюс, если перестановки образованные первыми и вторыми индексами элементов , входящие в произведения одинаковой четности (либо обе четные, либо нечетные) и со знаком минус в противоположном случае.

Определитель обозначается символом:

или краткоdet A=.(детерминант А)

Согласно определению = -.

Правило вычисления определителя 3ого порядка:

=

Миноры и алгебраические дополнения

Пусть дан определитель n-го порядка (n>1)

Определение 1. Минором элементаопределителяn-го порядка называется определитель (n-1)-ого порядка полученный из А вычеркиванием i-й строки и j-го столбца, на пересечении которых стоит данный элемент .

Например:

=

Определение 2 . Алгебраическим дополнением элемента называется число

Основные свойства определителей n-го порядка

1.О равносильности строк и столбцов.

Величина определителя n-го порядка не меняется, если у него заменить строки соответствующими столбцами.

2.Если у определителей поменять местами две строки (столбца), то определитель изменит знак на противоположный.

= k

Если все элементы какой-либо строки (или столбца) определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя.

4.Величина определителя равна нулю, если все элементы какой-либо его строки нули (или столбца).

5.Определитель с двумя пропорциональными строками равен 0.

Например:

6.Величина определителя не изменится, если к его элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

7.Если элементы какой-либо строки i определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки кроме i-й такие же, как в заданном определителе, а i-я строка одного определителя состоит из первых слагаемых, а второго из вторых.

8.Определитель равен сумме произведений всех элементов какой-либо его строки на их алгебраические дополнения.

=

9.Сумма произведений всех элементов какой-либо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Например:

=

Теорема Лапласа

Теорема. Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1.Тогда сумма произведений всех миноровk-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Следствие . Частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель A может быть вычислен по следующим формулам:

Разложение по i-й строке:

Разложение по j-й строке:

где - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j.

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить k равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры для самостоятельного решения .

1.Найти х из уравнений и проверить подстановкой корень в определитель.

а); б)

Определители, их свойства и вычисление

1.Определители второго и третьего порядков; их вычисление .

Определитель первого порядка равен тому единственному элементу, из которого состоит соответствующая матрица.

Определитель второго порядка вычислим, например, по элементам первой строки

Запишем разложение данного определителя по элементам второй строки

Полученный результат совпадает с результатом вычисления определителя по первой строке. Этот же результат получится и при разложении по любому из столбцов. Рекомендуем это проверить самостоятельно.

Из сказанного можно заключить, что определитель второго порядка равен произведению элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной диагонали .

Определители n-го порядка; миноры и алгебраические дополнения. Свойства и вычисление определителей n-го порядка.

Определителем n-го порядка, соответствующим матрице
, называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» - . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» - рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» - рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).

Минором элемента матрицы n -го порядка называется определитель матрицы (n-1) -го порядка, полученный из матрицы А вычеркиванием i -й строки и j -го столбца.

Рассмотрим квадратную матрицу второго порядка

Определение . Определителем квадратной матрицы второго порядка называют число, равное a 11 a 22 -a 12 a 21 и обозначают символом , то есть

Определитель матрицы называется также детерминантом . Обозначения определителя матрицы A : |A |, Δ, det A , det(a ij) .

Теперь рассмотрим квадратную матрицу третьего порядка

При вычислении определителя третьего порядка полезно знать правило треугольника: со знаком плюс идут произведения троек чисел, расположенных на главной диагонали матрицы, и в вершинах треугольников с основанием параллельным этой диагонали и вершиной в противоположого угла матрицы. Со знаком минус идут тройки из второй диагонали и из треугольноков, построенных относительно этой диагонали. Следующая схема демонстрирует это правило. В схеме синим (слева) отмечены элементы, чьи произведения идут со знаком плюс, а красным (справа) - со знаком минус.

Теперь дадим определение.

Определение . Определителем квадратной матрицы третьего порядка называют число

Определение . Минором какого-либо элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, к которым принадлежит данный элемент. Минор элемента a ik обозначим M ik .

Определение . Минор элемента a 21 определителя третьего порядка матрицы является определитель второго порядка

Определение a ik определителя называется его минор, взятый со знаком (-1) i+k .

Алгебраическое дополнение элемента a ik обозначим A ik . По определению

Правило для определения знака алгебраического дополнения (на примере определителя третьего порядка):

Пример . Алгебраическим дополнением элемента a 21 является

Теорема разложения . Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Свойства определителей

  • Определитель не изменится при замене всех его строк соответствующими столбцами.
  • При перестановке двух столбцов (строк) определитель меняет знак.
  • Определитель с двумя одинаковыми столбцами (строками) равен нулю.
  • Множитель, общий для элементов некоторого столбца (строки), можно выносить за знак определителя.
  • Определитель с двумя пропорциональными столбцами (строками) равен нулю.
  • Определитель равен нулю, если все элементы некоторого столбца (строки) равны нулю.
  • Определитель не изменится, если к элементам некоторого столбца (строки) прибавить соответствующие элементы другого столбца (строки), предварительно умножив их на один и тот же множитель.

Замечание . Если в определителе все элементы некоторого столбца (строки) равны суммам двух слагаемых, то такой определитель равен сумме двух соответствующих определителей.

Например,

Определители n -го порядка

Рассмотрим квадратную матрицу n -го порядка

Понятие определителя этой матрицы или определителя n -го порядка вводится индуктивно, считая, что уже введено понятие определителя порядка n-1 , соответствующего квадратной матрице (n-1) -го порядка.

Определение минора элемента матрицы и его алгебраического дополнения верны для определителей любого порядка.

Определение . Определителем порядка n , соответствующим матрице A n -го порядка, называют число, равное (M 1k - минор элемента a 1k ) и обозначаемое одним из символов

Итак, по определению

Эта формула выражает правило составления определителя порядка n по элементам первой строки соответствующей ему матрицы и по алгебраическим дополнениям этих элементов, являющимся определителем порядка n-1 , взятыми с надлежащими знаками.

Для определителя любого порядка верны все свойства и теоремы, полученные и доказанные для определителя третьего порядка.

Сформулируем основную теорему:

Теорема [Теорема замещения] . Каков бы ни был номер строки i (i=1,2,…,n ), для определителя n -го порядка справедлива формула

называемая разложением этого определителя по i -й строке.

Поскольку верно свойство 1 определителей, то определитель также можем разложить и по столбцу:

Примеры

Вычислим следующий определитель:

Вычтем вторую строку из первой и третьей. После прибавим к третей первую и из третей вынесем общий множитель:

Теперь ко второй строке прибавим третью, умноженную на 7, и к четвертой прибавим третью, умноженную на 2. После вынесем общий множитель из четвертой строки:

Разложим определитель по второму столбцу (знаки указывают значение (-1) i+j при миноре). Заметим, что в столбце только один ненулевой элемент, следовательно, в разложении останется только один определитель третьего порядка. Окончательно пулучаем ответ использую формулу для определителя третьего порядка.

Приведем еще несколько примеров для определителей различных порядков.




Top