Цифровое кодирование сигнала. Физическое кодирование

Нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

В некоторых случаях физическое кодирование решает проблемы:

Логическое кодирование

Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

В совокупности физическое кодирование и логическое кодирование образуют систему кодирования низкого уровня.

Форматы кодов [ ]

Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

Системы с двухуровневым кодированием

NRZ (Non Return to Zero)

NRZ (Non Return to Zero, с англ.  -  «без возвращения к нулю») - двухуровневый код. Логическому нулю соответствует нижний уровень, логической единице - верхний уровень. Информационные переходы происходят на границе значащих интервалов (значащий момент) .

Варианты представления кода NRZ

Различают несколько вариантов представления кода:

  • Униполярный код - логическая единица представлена верхним потенциалом, логический нуль представлен нулевым потенциалом;
  • Биполярный код - логическая единица представлена положительным потенциалом, логический нуль представлен отрицательным потенциалом.

Достоинства NRZ кода

  • Простая реализация;
  • Высокая скорость передачи данных;
  • Для синхронизации передачи байта используется старт-стоповый бит.

Недостатки NRZ кода

NRZI (Non Return to Zero Invertive) - потенциальный код с инверсией при единице, код формируется путем инверсного состояния при поступлении на вход кодирующего устройства логической единицы, при поступлении логического нуля состояние потенциала не меняется. Этот метод является модифицированным методом Non Return to Zero (NRZ) .

Поскольку код не защищен от долгих последовательностей логических нулей или единиц, то это может привести к проблемам синхронизации. Поэтому перед передачей, заданную последовательность битов рекомендуется предварительно закодировать кодом предусматривающим скремблирование (скремблер предназначен для придания свойств случайности передаваемой последовательности данных с целью облегчения выделения тактовой частоты приемником). Используется в Fast Ethernet 100Base-FX и 100Base-T4.

Достоинства NRZI кода

  • Простота реализации;
  • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов);
  • Спектр сигнала расположен в низкочастотной области относительно частоты следования значащих интервалов.

Недостатки NRZI кода

  • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита;
  • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

Манчестерское кодирование

Манчестерское кодирование

При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала в середине каждого такта. Различают два варианта манчестерского кодирования:

В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает самосинхронизирующими свойствами. Обязательное наличие перехода в центре бита позволяет легко выделить синхросигнал. Допустимое расхождение частот передачи - до 25 % (это означает, что код Манчестер-2 - самый устойчивый к рассинхронизации, он самосинхронизуется в каждом бите передаваемой информации).

Плотность кода 1 бит/герц. В спектре сигнала, закодированного Манчестером-2, присутствует 2 частоты - частота передачи и половинная частота передачи (она образуется когда рядом стоят 0 и 1 или 1 и 0. При передаче гипотетической последовательности одних 0 или 1 в спектре будет присутствовать только частота передачи).

Достоинства манчестерского кодирования

  • Нет постоянной составляющей (смена сигнала происходит на каждом такте передачи данных)
  • Полоса частот в сравнении с NRZ кодированием - основная гармоника в при передаче последовательности единиц или нулей имеет частоту N Гц, а при постоянной последовательности (при передаче чередования единиц и нулей) - N/2 Гц.
  • Является самосинхронизирующимся , то есть не требует специальной кодировки синхроимпульса, который бы занимал полосу данных и поэтому является самым плотным кодом на единицу частоты.
  • Возможность обеспечить гальваническую развязку с помощью трансформатора, так как у него отсутствует постоянная составляющая
  • Вторым важным преимуществом является отсутствие необходимости в синхронизующих битах (как в NRZ-коде) и, вследствие этого, данные могут передаваться подряд сколь угодно долго, из-за чего плотность данных в общем потоке кода приближается к 100 % (например для кода NRZ 1-8-0 она равна 80 %).

Код Миллера

Код Миллера (иногда называют трехчастотным) - является двуполярным двухуровневым кодом, в котором каждый информационный бит кодируется комбинацией из двух битов {00, 01,10,11}, а переходы из одного состояния в другое описываются графом . При непрерывном поступлении логических нулей или единиц на кодирующее устройство переключение полярности происходит с интервалом T, а переход от передачи единиц к передаче нулей с интервалом 1,5T. При поступлении на кодирующее устройство последовательности 101 возникает интервал 2Т, по этой причине данный метод кодирования называют трехчастотным .

Преимущества

  • Нет избыточности в коде (нет специальных комбинаций для синхронизации);
  • Способность к самосинхронизации (в самом коде заложен принцип по которому гарантированно можно синхронизироваться);
  • Полоса пропускания кода Миллера вдвое меньше полосы пропускания в сравнении с манчестерским кодированием.

Недостатки

  • Присутствие постоянной составляющей, при этом достаточно велик и низкочастотный компонент, что преодолено в модифицированном коде Миллера в квадрате.

Системы с трёхуровневым кодированием

RZ (return to zero)

AMI -код использует следующие представления битов:

  • биты 0 представляются нулевым напряжением (0 В)
  • биты 1 представляются поочерёдно значениями -U или +U (В)

HDB3 (биполярный код с высокой плотностью третьего порядка)

Код HDB3 (биполярный код с высокой плотностью третьего порядка ) исправляет любые 4 подряд идущих нуля в исходной последовательности. Правило формирования кода следующее: каждые 4 нуля заменяются 4 символами в которых имеется хотя бы один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Для замены используются два способа:

  1. Если перед заменой исходный код содержал нечётное число единиц то используется последовательность 000V
  2. Если перед заменой исходный код содержал чётное число единиц то используется последовательность 100V

V-сигнал единицы запрещённого для данного сигнала полярности

Тоже что и AMI , только кодирование последовательностей из четырех нулей заменяется на код -V/0, 0, 0, -V или +V/0, 0, 0, +V - в зависимости от предыдущей фазы сигнала и количества единиц в сигнале, предшествующем данной последовательности нулей.

MLT-3

Кодирование MLT-3

MLT-3 (Multi Level Transmission - 3) (англ. многоуровневая передача) - метод кодирования, использующий три уровня сигнала. Метод основывается на циклическом переключении уровней -U, 0, +U. Единице соответствует переход с одного уровня сигнала на следующий. Так же как и в методе NRZI при передаче логического нуля сигнал не меняется. Метод разработан Cisco Systems для использования в сетях FDDI на основе медных проводов, известных как CDDI. Также используется в Fast Ethernet 100BASE-TX . Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче нуля сигнал не меняется.

Преимущества MLT-3 кода

  • В случае наиболее частого переключения уровней (длинная последовательность единиц) для завершения цикла необходимо четыре перехода. Это позволяет вчетверо снизить частоту несущей относительно тактовой частоты, что делает MLT-3 удобным методом при использовании медных проводов в качестве среды передачи.
  • Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

Гибридный троичный код (англ.) русск.

Входной бит Предыдущее состояние
на выходе
Выходной бит
0 +
0
0
1 +
0 +

4B3T

4B3T (4 Binary 3 Ternary, когда 4 двоичных символа передаются с помощью 3 троичных символов) - cигнал на выходе кодирующего устройства, согласно коду 4B3T, является трехуровневым, то есть на выходе кодирующего устройства формируется сигнал с тремя потенциальными уровнями. Код формируется, например, согласно таблице кодирования MMS43 . Таблица кодирования:

MMS 43 coding table
Input Accumulated DC offset
1 2 3 4
0000 + 0 + (+2) 0−0 (−1)
0001 0 − + (+0)
0010 + − 0 (+0)
0011 0 0 + (+1) − − 0 (−2)
0100 − + 0 (+0)
0101 0 + + (+2) − 0 0 (−1)
0110 − + + (+1) − − + (−1)
0111 − 0 + (+0)
1000 + 0 0 (+1) 0 − − (−2)
1001 + − + (+1) − − − (−3)
1010 + + − (+1) + − − (−1)
1011 + 0 − (+0)
1100 + + + (+3) − + − (−1)
1101 0 + 0 (+1) − 0 − (−2)
1110 0 + − (+0)
1111 + + 0 (+2) 0 0 − (−1)

Таблица декодирования:

Ternary Binary Ternary Binary Ternary Binary
0 0 0 н/д − 0 0 0101 + − − 1010
+ 0 + 0000 − + + 0110 + 0 − 1011
0 − 0 0000 − − + 0110 + + + 1100
0 − + 0001 − 0 + 0111 − + − 1100
+ − 0 0010 + 0 0 1000 0 + 0 1101
0 0 + 0011 0 − − 1000 − 0 − 1101
− − 0 0011 + − + 1001 0 + − 1110
− + 0 0100 − − − 1001 + + 0 1111
0 + + 0101 + + − 1010 0 0 − 1111

Системы с четырёхуровневым кодированием

2B1Q (Потенциальный код 2B1Q)

Достоинство метода 2B1Q

  • Сигнальная скорость у этого метода в два раза ниже, чем у кодов NRZ и AMI, а спектр сигнала в два раза уже. Следовательно с помощью 2B1Q-кода можно по одной и той же линии передавать данные в два раза быстрее.

Недостатки метода 2B1Q

  • Реализация этого метода требует более мощного передатчика и более сложного приемника, который должен различать четыре уровня.

1.1 ОСНОВНЫЕ ПОНЯТИЯ

Кодирование – преобразование элементов дискретного сообщения в последовательности кодовых символов. Обратное преобразование – декодирование .

Устройства, осуществляющие эти операции автоматически, называются соответственно кодером и декодером . Кодек – устройство, объединяющее кодер и декодер.

Код – алгоритм (правило), по которому осуществляется кодирование.

Кодовая комбинация (слово) – последовательность кодовых символов, соответствующая одному элементу дискретного сообщения.

Кодовый алфавит – весь набор кодовых символов.

Основание кода m – число символов в кодовом алфавите. Если m=2 код называется двоичным , m>2 – многопозиционным (недвоичным) .

Разряд – значащая позиция кодового слова.

Разрядность (значность) кода n – число символов в кодовой комбинации. Если n=const, то код называется равномерным , n≠const – неравномерным .

Кодеры и декодеры легче сделать для равномерных двоичных кодов.

1.2 СИСТЕМА ПЕРЕДАЧИ ДИСКРЕТНЫХ СООБЩЕНИЙ

Рисунок 1.1 – Структурная схема системы передачи дискретных сообщений.

Источник выдает дискретное сообщение. Для формирования дискретного сообщения из непрерывного используется дискретизация по времени и по уровню.

Кодирование источника (сжатие данных) применяется для снижения технических затрат на хранение и передачу информации.

Криптографическое кодирование (шифрование) применяется для предотвращения несанкционированного доступа к информации.

Кодирование канала (помехоустойчивое кодирование) применяется для повышения достоверности передачи информации по каналу с помехами.

1.3 СЖАТИЕ ДАННЫХ

Сжатие возможно, т.к. данные на выходе источника содержат избыточную и/или плохо различимую информацию.

Плохо различимая информация - информация, которая не воздействует на ее приемник. Подобная информация сокращается или удаляется при использовании сжатия с потерями . При этом энтропия исходной информации уменьшается. Сжатие с потерями применяется при сжатии цифровых изображений и оцифрованного звука.

Приемы, применяемые в алгоритмах сжатия с потерями:

Использование модели – подбор параметров модели и передача только одних параметров;

Предсказание – предсказание последующего элемента и передача величины ошибки;

Дифференциальное кодирование – передача изменений последующего элемента при сравнении с предыдущим.

Избыточная информация – информация, которая не добавляет знаний о предмете. Избыточность может быть уменьшена или устранена с помощью сжатия без потерь (эффективного кодирования) . При этом энтропия данных остается неизменной. Сжатие без потерь применяется в системах передачи данных.

Приемы, применяемые в алгоритмах сжатия без потерь:

Кодирование длин последовательностей – передача числа повторяющихся элементов;

Кодирование словаря – использование ссылок на переданные ранее последовательности, а не их повторение;

Неравномерное кодирование – более вероятным символам присваиваются более короткие кодовые слова.

1.4 КОДИРОВАНИЕ СЛОВАРЯ

Позволяет уменьшить избыточность, вызванную зависимостью между символами. Идея кодирования словаря состоит в замене часто встречающихся последовательностей символов ссылками на образцы, хранящиеся в специально создаваемой таблице (словаре). Данный подход основан на алгоритме LZ, описанном в работах израильских исследователей Зива и Лемпеля.

1.5 НЕРАВНОМЕРНОЕ КОДИРОВАНИЕ

Позволяет уменьшить избыточность, вызванную неравной вероятностью символов. Идея неравномерного кодирования состоит в использовании коротких кодовых слов для часто встречающихся символов и длинных – для редко возникающих. Данный подход основан на алгоритмах Шеннона-Фано и Хаффмана.

Коды Шеннона-Фано и Хаффмана являются префиксными. Префиксный код – код, обладающий тем свойством, что никакое более короткое слово не является началом (префиксом) другого более длинного слова. Такой код всегда однозначно декодируем. Обратное неверно.

Код Шеннона-Фано строится следующим образом. Символы источника выписываются в порядке убывания вероятностей (частот) их появления. Затем эти символы разбиваются на две части, верхнюю и нижнюю, так, чтобы суммарные вероятности этих частей были по возможности одинаковыми. Для символов верхней части в качестве первого символа кодового слова используется 1, а нижней – 0. Затем каждая из этих частей делится еще раз пополам и записывается второй символ кодового слова. Процесс повторяется до тех пор, пока в каждой из полученных частей не останется по одному символу.

Пример1.1:

Таблица 1.1 – Построение кода Шеннона-Фано.

Вероятность

Этапы разбиения

Алгоритм Шеннона-Фано не всегда приводит к построению однозначного кода с наименьшей средней длиной кодового слова. От отмеченных недостатков свободен алгоритм Хаффмана.

Код Хаффмана строится следующим образом. Символы источника располагают в порядке убывания вероятностей (частот) их появления. Два самых последних символа объединяют в один вспомогательный, которому приписывают суммарную вероятность. Полученные символы вновь располагают в порядке убывания вероятностей, а два последних объединяют. Процесс продолжается до тех пор, пока не останется единственный вспомогательный символ с вероятностью 1. Для нахождения кодовых комбинаций строится кодовое дерево. Из точки, соответствующей вероятности 1, направляются две ветви. Ветви с большей вероятностью присваивается символ 1, с меньшей – 0. Такое ветвление продолжается до достижения вероятности каждого символа. Двигаясь по кодовому дереву сверху вниз , записывают для каждого символа кодовую комбинацию.

Пример1.2:

Таблица 1.2 – Построение кода Хаффмана.

Рисунок 1.2 – Кодовое дерево для кода Хаффмана.

). Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат.

Энциклопедичный YouTube

  • 1 / 5

    Система кодирования сигналов имеет многоуровневую иерархию.

    Физическое кодирование

    Самым нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

    Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

    С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

    Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

    Логическое кодирование

    Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

    В совокупности физическое кодирование и логическое кодирование образуют систему кодирования самого низшего уровня.

    Форматы кодов

    Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

    • Формат БВН (без возвращения к нулю) естественным образом соответствует режиму работы логических схем. Единичный бит передается в пределах такта уровень не меняется. Положительный перепад означает переход из 0 к 1 в исходном коде, отрицательный - от 1 к 0. Отсутствие перепадов показывает, что значения предыдущего и последующего битов равны. Для декодирования кодов в формате БВН необходимы тактовые импульсы, так как в его спектре не содержится тактовая частота. Соответствующий коду формата БВН сигнал содержит низкочастотные компоненты (при передаче длинных серий нулей или единиц перепады не возникают).
    • Формат БВН-1 (без возвращения к нулю с перепадом при передаче 1) является разновидностью формата БВН. В отличие от последнего в БВН-1 уровень не передает данные, так как и положительные и отрицательные перепады соответствуют единичным битам. Перепады сигнала формируются при передаче 1. При передаче 0 уровень не меняется. Для декодирования требуются тактовые импульсы.
    • Формат БВН −0 (без возвращения к нулю с перепадом при передаче 0) является дополнительным к БВН-1 (перепады соответствуют нулевым битам исходного кода). В многодорожечных системах записи цифровых сигналов вместе с кодом в формате БВН надо записывать тактовые импульсы. Возможным вариантом является запись двух дополнительных сигналов, соответствующих кодам в форматах БВН-1 и БВН-0. В одном из двух сигналов перепады происходят в каждом такте, что позволяет получить импульсы тактовой частоты.
    • Формат ВН (с возвращением к нулю) требует передачи импульса, занимающего только часть тактового интервала (например, половину), при одиночном бите. При нулевом бите импульс не формируется.
    • Формат ВН-П (с активной паузой) означает передачу импульса положительной полярности при единичном бите и отрицательной - при нулевом бите. Сигнал этого формата имеет в спектре компоненты тактовой частоты. Он применяется в ряде случаев для передачи данных по линиям связи.
    • Формат ДФ-0 (двухфазный со скачком фазы при передаче 0) соответствует способу представления, при котором перепады формируются в начале каждого такта. При единичных битах сигнал в этом формате меняется с тактовой частотой, то есть в середине каждого такта происходит перепад уровня. При передаче нулевого бита перепад в середине такта не формируется, то есть имеет место скачок фазы. Код в данном формате обладает возможностью самосинхронизации и не требует передачи тактовых сигналов.

    Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

    Системы с двухуровневым кодированием

    Без возврата к нулю

    Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ (англ.) русск. ).

    При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI).

    NRZ

    Для передачи единиц и нулей используются два устойчиво различаемых потенциала:

    • биты 0 представляются нулевым напряжением 0 (В);
    • биты 1 представляются значением U (В).

    NRZ (перевёрнутый):

    • биты 0 представляются значением U (В);
    • биты 1 представляются нулевым напряжением 0 (В).

    Простейший код, обычный цифровой (дискретный) сигнал (может быть преобразован на обратную полярность или изменены уровни соответствующие нулю и единице).

    Достоинства - простая реализация; не нужно кодировать и декодировать на концах. Высокая скорость передачи при заданной полосе пропускания (для обеспечения пропускной способности в 10Мбит/сек полоса пропускания составит 5 МГц, так как одно колебание равно 2 битам). Для синхронизации передачи байта используется старт-стоповый бит.

    Недостатки - Наличие постоянной составляющей, из за чего невозможно обеспечить гальваническую развязку с помощью трансформатора. Высокие требования к синхронизации частот на приёмном и передающем конце - за время передачи одного слова (байта) приемник не должен сбиться больше, чем на бит (например для слова длиной в байт с битом старта и стопа, то есть всего 10 бит канальной информации, рассинхронизация частот приёмника и передатчика не может превышать 10 % в обе стороны, для слова в 16 бит, то есть 18 бит канальной информации, рассинхронизация не должна превышать 5,5 %, а в физических реализациях и того меньше).

    NRZI

    При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

    Достоинства метода NRZI:

    • Простота реализации.
    • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов).
    • Основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N - битовая скорость передачи дискретных данных бит/с), что приводит к узкому спектру.

    Недостатки метода NRZI:

    • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
    • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

    MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZI, но в отличие от последнего имеет три уровня сигнала. Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче «нуля» сигнал не меняется.

    Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

    Гибридный троичный код (англ.) русск.

    Входной бит Предыдущее состояние
    на выходе
    Выходной бит
    0 +
    0
    0
    1 +
    0 +

    4B3T [убрать шаблон]

    Таблица кодирования:

    MMS 43 coding table
    Input Accumulated DC offset
    1 2 3 4
    0000 + 0 + (+2) 0−0 (−1)
    0001 0 − + (+0)
    0010 + − 0 (+0)
    0011 0 0 + (+1) − − 0 (−2)
    0100 − + 0 (+0)
    0101 0 + + (+2) − 0 0 (−1)
    0110 − + + (+1) − − + (−1)
    0111 − 0 + (+0)
    1000 + 0 0 (+1) 0 − − (−2)
    1001 + − + (+1) − − − (−3)
    1010 + + − (+1) + − − (−1)
    1011 + 0 − (+0)
    1100 + + + (+3) − + − (−1)
    1101 0 + 0 (+1) − 0 − (−2)
    1110 0 + − (+0)
    1111 + + 0 (+2) 0 0 − (−1)

    Таблица декодирования.

    Кодирование сигналов

    Кодирование сигналов служит для обмена информацией между отдельными составляющими СУ ТОУ (САУ или АСУ) (схемами, узлами, устройствами, блоками), ее обработки и хранение с требуемой точностью и надежностью (самая высокая помехозащищенность). Кодирование состоит в использовании кода – универсального способа отображения информации при ее передаче, обработке и хранении. Код представляет собой систему соответствий между элементами сообщений и сигналами, при помощи которых эти элементы можно зафиксировать. В коде различные виды сигналов одной физической природы называются символами . Конечная совокупность символов, выбранная для передачи конкретного сообщения , называется словом . Кодовый сигнал (код) - особый вид сигналов (цифровой сигнал). Кодирование может производиться либо от аналоговых, либо от дискретных сигналов (рис.1.2).

    пример : 0 или 1 – символы в одном разряде двоичного кода (1 бит информации);

    байт содержит 8 бит информации (8 разрядов), т.е. например, 10001001 байтовое слово.

    В АСУ так же как в любых информационно-измерительных системах (ИИС) применяются два способа передачи сообщений (совокупности слов): параллельным кодом – все символы одного слова передаются одновременно по каналам, число которых соответствует количеству символов, т.е. длине слова (для передачи байтового слова нужно 8 каналов); последовательным кодом - символы одного слова передаются друг за другом по одному каналу.

    Выбор кодов определяется спецификой восприятия и преобразования информации, характерной для данного уровня АСУ ТП и ее составляющих.

    Основными требованиями , которые выдвигаются при выборе способа кодирования, являются: экономичность отображения информации, простота технической реализации устройств кодирования, удобство выполнения вычислительных операций и надежность передачи сообщений.

    Для выполнения этих требований, особенно связанных с удобством выполнения вычислительных операций , наиболее пригоден цифровой код (алфавит), число символов в котором зависит от основания системы счисления и обычно не превышает 10 или 16. Такой подход позволяет осуществлять кодирование не только чисел, но и понятий.

    При помощи кода с основанием n любое число можно представить в виде:

    где N – количество разрядов; a j – количество символов в одном разряде.

    Если опустить n j , то получим более компактную запись N – разрядного (от N –1 до 0) числа М:

    . (1.2)

    Пример: М = 123 = 1×10 3-1 + 2 × 10 2-1 + 3 ×10° (n=10).

    Из формул (1.1) и (1.2) следует, что одно и то же число М в зависимости от основания n при кодировании формируется из разного количества символов в одном разряде (a j )и количества разрядов (N ). Например, цифровой 3-разрядный десятичный вольтметр, представляющий информацию в коде с основанием 10, имеет в каждом разряде 10 различных цифр (символов), может с точностью до 1 младшего разряда выдать 1000 (0, 1, …, 999) различных значений измеряемого параметра (напряжения). для осуществления той же операции в двоичном коде (коде с основанием 2) потребуется 10 разрядов с двумя значащими цифрами в каждом из них (2 10 = 1024).

    Пусть n – максимальное число символов в разряде (основание кода), а N – число разрядов.

    Тогда возможное количество различных сообщений составляет

    Например, 1024 = 2 10 ; в двоичном коде с помощью 10 разрядов можно записать максимальное число 1024, т.е. для передачи числа 1024 понадобится 10 каналов (разрядов) двоичного кода.

    Экономичность кодирования будет тем выше, чем меньше знаков следует затратить на передачу одного и того же сообщения. При передаче сообщений по каналу связи количество знаков определяет также и необходимое для этого время.

    По соображениям простоты технической реализации явное преимущество на стороне кода с n = 2, при котором для хранения, передачи и обработки информации необходимы дискретные элементы с двумя устойчивыми состояниями.

    Пример: логические функции: «да» - «нет», состояние блока ТОУ: «включено» - «отключено», действие (операция): «выполнено» – «не выполнено», техническое состояние узла ТОУ: «исправен» - «неисправен», кодируется цифрами «1» - «0».

    Поэтому двоичный код получил широкое распространение в цифровых устройствах измерения контроля, управления и автоматизации.

    При вводе двоично-кодированной информации в ЭВМ для компактной записи часто используют коды, основание которых являются целой степенью чисел 2:2 3 = 8 (восьмеричный) и 2 4 = 16 (шестнадцатеричный).

    Для примера рассмотрим формирование чисел в различных системах счисления (табл.1.1).

    Таблица 1.1

    Система счисления
    Десятичная n = 10 Двоичная n = 2 Восьмеричная n = 8 Шестнадцатеричная n = 16
    А
    В…F

    Рассмотрим двоичные позиционные коды. Среди них широко используются специальные коды: прямой, обратный, дополнительный . Во всех этих кодах введен специальный знаковый разряд.

    В прямом коде знак кодируется 0 для положительных и 1 – для отрицательных чисел. Пример 1100 (+12) в прямом коде 0.1100. Прямой код удобен для выполнения операций умножения, т.к. знак произведения получается автоматически. Однако затруднено вычитание. Этот недостаток устраняется применением обратного и дополнительного кодов , отличающихся от прямого способом представления отрицательных чисел. Обратный код отрицательного числа образуется инвертированием всех значащих разрядов (-1100 (– 12) в обратном коде: 1.0011). В дополнительном коде после инвертирования разрядов в младший размер добавляется 1. Пример: - 1100 в дополнительном коде: 1.0100.

    В системах и устройствах отображение информации (цифровой индикации) нашли применение двоично-десятичные коды . В этих кодах каждая десятичная цифра представляется четырьмя двоичными (тетрадой).

    Системы кодирования в 2-10 кодах показаны в табл.1.2.

    Таблица 1.2

    Выбор частоты квантования для аналого-цифрового преобразователя (АЦП) . При квантовании и последующем кодировании сигналов, например в случае квантования по времени в виде импульсов, модулированных по амплитуде (рис.1.3, б), дальнейшее преобразование сигналов в АЦП заключается в представлении амплитуды импульсов двоичным кодом. При этом установление частоты квантования усложняется в тех случаях, когда исходный аналоговый сигнал y (f ) является произвольной функцией времени и не поддается аналитическому выражению. Тогда частота квантования определяется на основании теоремы В.А.Котельникова . В этой теореме рассматривается непрерывная функция, имеющая ограниченный спектр частот, т.е. содержит частоты от 0 до f m а x . Такую функцию можно представить с достаточной точностью при помощи чисел, следующих друг за другом через интервалы времени

    Следовательно, исходя из формулы (1.4), определяющей шаг квантования, при частоте квантования

    При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.

    В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.

    Требования к методам цифрового кодирования

    При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно до­стигал бы нескольких целей:

    Имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;

    Обеспечивал синхронизацию между передатчиком и приемником;

    Обладал способностью распознавать ошибки;

    Обладал низкой стоимостью реализации.

    Более узкий спектр сигналов позволяет на одной и той же линии (с одной и той же полосой пропускания) добиваться более высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия постоянной составляющей, то есть наличия постоянного тока между передатчиком и приемником. В частности, применение различных трансформаторных схем гальванической развязки препятствует прохождению постоянного тока.

    Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами, например между блоками внутри компьютера или же между компьютером и принтером. На небольших расстояниях хорошо работает схема, основанная на отдельной тактирующей линии связи (рис), так что информация снимается с линии данных только в момент прихода тактового импульса. В сетях использование этой схемы вызывает трудности из-за неоднородности характеристик проводников в кабелях. На больших расстояниях неравномерность скорости распространения сигнала может привести к тому, что тактовый импульс придет настолько позже или раньше соответствующего сигнала данных, что бит данных будет пропущен или считан повторно. Другой причиной, по которой в сетях отказываются от использования тактирующих импульсов, является экономия проводников в дорогостоящих кабелях.

    Поэтому в сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала - так называемый фронт - может служить хорошим указанием для синхронизации приемника с передатчиком.

    При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несущей частоты дает возможность приемнику определить момент появления входного кода.

    Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, лежащие выше: канальный, сетевой, транспортный или прикладной. С другой стороны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распознавании ошибочных бит внутри кадра.

    Требования, предъявляемые к методам кодирования, являются взаимно проти­воречивыми, поэтому каждый из рассматриваемых ниже популярных методов цифрового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.

    Потенциальный код без возвращения к нулю

    На рис. 2.16, а показан уже упомянутый ранее метод потенциального кодирования, называемый также кодированием без возвращения к нулю (NonReturntoZero,NRZ). Последнее название отражает то обстоятельство, что при передаче последователь­ности единиц сигнал не возвращается к нулю в течение такта (как мы увидим ниже, в других методах кодирования возврат к нулю в этом случае происходит). МетодNRZпрост в реализации, обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхро­низации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник лишен возможности определять по вход­ному сигналу моменты времени, когда нужно в очередной раз считывать данные. Даже при наличии высокоточного тактового генератора приемник может ошибиться с моментом съема данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длин­ных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию не­корректного значения бита.

    Другим серьезным недостатком метода NRZявляется наличие низкочастотной составляющей, которая приближается к нулю при передаче длинных последовательностей единиц или нулей. Из-за этого многие каналы связи, не обеспечивающие прямого гальванического соединения между приемником и источником, этот вид кодирования не поддерживают. В результате в чистом виде кодNRZв сетях не используется. Тем не менее используются его различные модификации, в которых устраняют как плохую самосинхронизацию кодаNRZ, так и наличие постоянной составляющей. Привлекательность кодаNRZ, из-за которой имеет смысл заняться его улучшением, состоит в достаточно низкой частоте основной гармоникиfo, которая равнаN/2 Гц, как это было показано в предыдущем разделе. У других мето­дов кодирования, например манчестерского, основная гармоника имеет более высокую частоту.

    Метод биполярного кодирования с альтернативной инверсией

    Одной из модификаций метода NRZявляется метод биполярного кодирования с альтернативной инверсией (BipolarAlternateMarkInversion,AMI). В этом методе (рис. 2.16, б) используются три уровня потенциала - отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потен­циал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным, при этом потенциал каждой новой единицы противоположен потенциалу предыдущей.

    Код AMIчастично ликвидирует проблемы постоянной составляющей и отсут­ствия самосинхронизации, присущие кодуNRZ. Это происходит при передаче длинных последовательностей единиц. В этих случаях сигнал на линии представляет собой последовательность разнополярных импульсов с тем же спектром, что и у кодаNRZ, передающего чередующиеся нули и единицы, то есть без постоянной составляющей и с основной гармоникойN/2 Гц (где N - битовая скорость переда­чи данных). Длинные же последовательности нулей также опасны для кодаAMI, как и для кодаNRZ- сигнал вырождается в постоянный потенциал нулевой амплитуды. Поэтому кодAMIтребует дальнейшего улучшения, хотя задача упрощается - осталось справиться только с последовательностями нулей.

    В целом, для различных комбинаций бит на линии использование кода AMIприводит к более узкому спектру сигнала, чем для кодаNRZ, а значит, и к более высокой пропускной способности линии. Например, при передаче чередующихся единиц и нулей основная гармоникаfoимеет частотуN/4 Гц. КодAMIпредоставляет также некоторые возможности по распознаванию ошибочных сигналов. Так, нарушение строгого чередования полярности сигналов говорит о ложном импульсе или исчезновении с линии корректного импульса. Сигнал с некорректной полярностью называется запрещенным сигналом (signalviolation).

    В коде AMIиспользуются не два, а три уровня сигнала на линии. Дополнительный уровень требует увеличение мощности передатчика примерно на 3 дБ для обеспечения той же достоверности приема бит на линии, что является общим недостатком кодов с несколькими состояниями сигнала по сравнению с кодами, которые различают только два состояния.

    Потенциальный код с инверсией при единице

    Существует код, похожий на AMI, но только с двумя уровнями сигнала. При пере­даче нуля он передает потенциал, который был установлен в предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице

    (NonReturntoZerowithonesInverted,NRZI). Этот код удобен в тех случаях, когда использование третьего уровня сигнала весьма нежелательно, например в оптичес­ких кабелях, где устойчиво распознаются два состояния сигнала - свет и темнота. Для улучшения потенциальных кодов, подобныхAMIиNRZI, используются два метода. Первый метод основан на добавлении в исходный код избыточных бит, содержащих логические единицы. Очевидно, что в этом случае длинные последовательности нулей прерываются и код становится самосинхронизирующимся для любых передаваемых данных. Исчезает также постоянная составляющая, а значит, еще более сужается спектр сигнала. Но этот метод снижает полезную пропускную способность линии, так как избыточные единицы пользовательской информации не несут. Другой метод основан на предварительном «перемешивании» исходной информации таким образом, чтобы вероятность появления единиц и нулей на ли­нии становилась близкой. Устройства, или блоки, выполняющие такую операцию, называются скрэмблерами (scramble- свалка, беспорядочная сборка). При скремблировании используется известный алгоритм, поэтому приемник, получив двоич­ные данные, передает их на дескрэмблер, который восстанавливает исходную последовательность бит. Избыточные биты при этом по линии не передаются. Оба метода относятся к логическому, а не физическому кодированию, так как форму сигналов на линии они не определяют. Более детально они изучаются в следующем разделе.

    Биполярный импульсный код

    Кроме потенциальных кодов в сетях используются и импульсные коды, когда дан­ные представлены полным импульсом или же его частью - фронтом. Наиболее простым случаем такого подхода является биполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль - другой (рис. 2.16, в). Каждый импульс длится половину такта. Такой код обладает отличными самосинхронизирующими свойствами, но постоянная составляющая может присутство­вать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Так, при передаче всех нулей или единиц частота основной гармоники кода будет равна N Гц, что в два раза выше основной гармоники кода NRZи в четыре раза выше основной гармоники кодаAMIпри передаче чередующихся единиц и нулей. Из-за слишком широкого спектра биполярный импульсный код используется редко.

    Манчестерский код

    В локальных сетях до недавнего времени самым распространенным методом коди­рования был так называемый манчестерский код (рис. 2.16, г). Он применяется в технологиях EthernetиTokenRing.

    В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль - обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколь­ко единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, т.о. манчестерский код обладает хорошими самосинхронизирующими свойствами. Полоса пропускания манчестерского кода уже, чем у биполярного импульсного. У него также нет постоянной составляющей, а основная гармоника в худшем случае (при передаче последовательности единиц или нулей) имеет частоту N Гц, а в лучшем (при передаче чередующихся единиц и нулей) она равна N/2 Гц, как и у кодовAMIилиNRZ. В среднем ширина полосы манчестерского кода в полтора раза уже, чем у биполярного импульсного кода, а основная гармоника колеблется вблизи значения 3N/4. Манчестерский код имеет еще одно преимущество перед биполярным импульсным кодом. В последнем для передачи данных используются три уровня сигнала, а в манчестерском - два.

    Потенциальный код 2В1 Q

    На рис. 2.16, д показан потенциальный код с четырьмя уровнями сигнала для кодирования данных. Это код 2В1Q, название которого отражает его суть - каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). Паре бит 00 соответствует потенциал -2,5 В, паре бит 01 соответствует потенциал -0,833 В, паре 11 - потенциал +0,833 В, а паре 10 - потенциал +2,5 В. При этом способе кодирования требуются дополнительные меры по борьбе с длинными по­следовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кодаNRZ, так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2В1Qможно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кодаAMIилиNRZI. Однако для его реализации мощность передатчика должна быть выше, что­бы четыре уровня четко различались приемником на фоне помех.




Top