Что выполняет процессор в пк. Как работает процессор компьютера? Что такое троттлинг процессора

Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком . Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Функция процессора — вычисления . Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор .

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора . Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная . Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер . Она не складывается и не умножается.

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра . Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

Hyper- Threading — весьма полезная в ряде задач технология . Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами ? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper- Threading . В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron . Два ядра, «гипе-трединг» отсутствует = два потока.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач . Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5 . Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника . Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Процессор Количество ядер Вычислительные потоки Типичная область применения
Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.

Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

  • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
  • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
  • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
  • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
  • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
  • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.

Вероятно, выбирая компьютер и изучая его характеристики вы заметили, что такому пункту как процессор придают большое значение. Почему именно ему, а не модели , блока питания, или ? Да, это тоже важные компоненты системы и от их правильного подбора также многое зависит, однако характеристики ЦП напрямую и в большей степени влияют на скорость и производительность ПК. Давайте разберем значение этого устройства в компьютере.

А начнем с того, что уберем процессор из системного блока. В итоге компьютер не будет работать. Теперь понимаете, какую роль он играет? Но давайте более детально изучим вопрос и узнаем что такое процессор компьютера.

Что такое процессор компьютера

Вся суть в том, что центральный процессор (его полное название) – как говорят, самое настоящее сердце и одновременно мозг компьютера. Пока он работает, работают и все остальные составляющие системного блока и подключенная к нему периферия. Он отвечает за обработку потоков различных данных, а также регулирует работу частей системы.

Более техническое определение можно найти в Википеди:

Центральный процессор - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

В жизни ЦПУ имеет вид небольшой квадратной платы размером со спичечный коробок толщиной в несколько миллиметров, верхняя часть которого как, как правило, прикрыта металлической крышкой (в настольных версиях), а на нижней расположено множество контактов. Собственно, дабы не распинаться, посмотрите следующие фотографии:

Без команды, отданной процессором, не может быть произведена даже такая простая операция, как сложение двух чисел, или запись одного мегабайта информации. Все это требует немедленного обращения к ЦП. Что уж до более сложных задач, таких как запуск игры, или обработка видео.

К словам выше стоит добавить, что процессоры могут выполнять и функции видеокарты. Дело в том, что в современных чипах отведено место для видеоконтроллера, который выполняет все необходимые от нее функции, а как видеопамять использует . Не стоит думать, что встроенные графические ядра способны конкурировать с видеокартами хотя бы среднего класса, это больше вариант для офисных машин, где мощная графика не нужна, но все же потянуть что-то слабое им по зубам. Главным же достоинством интегрированной графики является цена — все же отдельную видеокарту покупать не нужно, а это существенная экономия.

Как работает процессор

В предыдущем пункте было разобрано, что такое процессор и для чего он нужен. Самое время посмотреть на то, как это работает.

Деятельность ЦП можно представить последовательностью следующих событий:

  • Из ОЗУ, куда загрузилась определенная программа (допустим текстовый редактор), управляющий блок процессора извлекает необходимые сведения, а также набор команд, которые обязательно нужно выполнить. Все это отправляется в буферную память (кэш) ЦП;
  • Выходящая из кэш-памяти информация разделяется на два вида: инструкции и значения , которые отправляются в регистры (это такие ячейки памяти в процессоре). Первые идут в регистры команд, а вторые в регистры данных;
  • Информацию из регистров обрабатывает арифметико-логическое устройство (часть ЦПУ, которая выполняет арифметические и логические преобразования поступающих данных), которое из них считывает информацию, а за тем исполняет необходимые команды над получившимися в итоге числами;
  • Получившиеся результаты, разделяющиеся на законченные и незаконченные , идут в регистры, откуда первая группа отправляется в кэш-память ЦП;
  • Этот пункт начнем с того, что есть два основных уровня кэша: верхний и нижний . Последние полученные команды и данные, нужные для выполнения расчетов, поступают в кэш верхнего уровня, а неиспользуемые отправляются в кэш нижнего уровня. Этот процесс идёт следующим образом — вся информация идёт с третьего уровня кэша на второй, а потом попадает на первый, с не нужными на текущий момент данными и их отправкой на нижний уровень все обстоит наоборот;
  • По окончанию вычислительного цикла, конечный итог будет записан в оперативной памяти системы, для освобождения места кэш-памяти ЦП для новых операций. Но может произойти так, что буферная память будет переполнена, тогда неэксплуатируемые данные пойдут в оперативную память, или на нижний уровень кэша.

Поэтапные шаги вышеприведенных действий являются операционным потоком процессора и ответом на вопрос – как работает процессор.

Виды процессоров и основные их производители

Существует множество видов процессоров от слабых одноядерных, до мощных многоядерных. От игровых и рабочих до средних по всем параметрам. Но, есть два основных лагеря ЦП – AMD и знаменитые Intel. Это две компании, производящие самые востребованные и популярные микропроцессоры на рынке. Основное различие между продукцией AMD и Intel – не количество ядер, а архитектура – внутреннее строение. Каждый из конкурентов предлагает свое строение «внутренностей», свой вид процессора, кардинально отличающуюся от конкурента.

У продуктов каждой из сторон есть свои плюсы и минусы, предлагаю кратко ознакомиться с ними поближе.

Плюсы процессоров Intel :

  • Обладает более низким потреблением энергии;
  • Разработчики больше ориентируются на Интел, чем на АМД;
  • Лучше производительность в играх;
  • Связь процессоров Интел с ОЗУ реализована лучше, нежели у АМД;
  • Операции, осуществляемые в рамках только одной программы (на пример разархивирование) идут лучше, АМД в этом плане поигрывает.

Минусы процессоров Intel :

  • Самый большой минус – цена. ЦП от данного производителя зачастую на порядок выше чем у их главного конкурента;
  • Производительность снижается при использовании двух и более «тяжелых» программ;
  • Интегрированные графические ядра уступают АМД;

Плюсы процессоров AMD :

  • Самый большой плюс — самый большой минус Intel – цена. Вы можете купить хороший середнячок от AMD, который будет на твердую 4, а может даже и 5 тянуть современные игры, при этом стоить он будет намного ниже чем аналогичный по производительности процессор от конкурента;
  • Адекватное соотношение качества и цены;
  • Обеспечивают качественную работу системы;
  • Возможность разгона процессора, повышая тем самым его мощность на 10-20%;
  • Интегрированные графические ядра превосходят Интел.

Минусы процессоров AMD :

  • Процессоры от АМД хуже взаимодействуют с ОЗУ;
  • Энергопотребление больше, чем у Интел;
  • Работа буферной памяти на втором и третьем уровне идёт на более низкой частоте;
  • Производительность в играх отстает от показателей конкурента;

Но, несмотря на приведенные достоинства и недостатки, каждая из компаний продолжает развиваться, их процессоры с каждым поколением становятся мощнее, а ошибки предыдущей линейки учитываются и исправляются.

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает. Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики.

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

  • Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
  • Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
  • Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
  • Поддержка определенного сокета - очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
  • Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
  • Кэш - установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
  • Количество ядер - в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
  • Энергопотребление и тепловыделение. Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
  • Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты. Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Выводы

Как вы уже поняли центральный процессор компьютера играет важнейшую роль в системе. В сегодняшней статье мы с вами разобрали, что такое процессор компьютера, что такое частота процессора, какие они бывают и для чего нужны. Как сильно одни ЦП отличаются от других, какие виды процессоров бывают. Поговорили о плюсах и минусах продукции двух конкурирующих между собой кампаний. Но с какой характеристикой процессор будет стоять в вашем системном блоке решать только вам.

Процессоры (микропроцессоры)

"Мозгом" персонального компьютера является микропроцессор, или центральный процессор - CPU (Central Processing Unit) . Микропроцессор выполняет вычисления и обработку данных (за исключением некоторых математических операций, осуществляемых в компьютерах, имеющих сопроцессор) и, как правило, является самой дорогостоящей микросхемой компьютера. Во всех PC-совместимых компьютерах используются процессоры, совместимые с семейством микросхем Intel, но выпускаются и проектируются они как самой Intel, так и компаниями AMD, Cyrix, IDT и Rise Technologies.

До появления первого pc

Обратите внимание, что первый процессор был выпущен за 10 лет до появления первого компьютера IBM PC. Он был разработан компанией Intel, назван Intel 4004, а его выпуск состоялся 15 ноября 1971 года. Рабочая частота этого процессора составляла всего 108 кГц (0,108 МГц!). Этот процессор содержал 2 300 транзисторов и производился по 10-микронной технологии. Шина данных имела ширину 4 разряда и позволяла адресовать 640 байт памяти. Процессор 4004 использовался в схемах управления светофоров, анализаторах крови и даже на межпланетной научно-исследовательской станции NASA Pioneer 10!

15 ноября 2001 года исполнилось 30 лет со дня появления первого микропроцессора. За эти годы быстродействие процессора увеличилось более чем в 18 500 раз (с 0,108 МГц до 2 ГГц).

Параметры процессоров

При описании параметров и устройства процессоров часто возникает путаница. Рассмотрим некоторые характеристики процессоров, в том числе разрядность шины данных ишины адреса , а такжебыстродействие .

Процессоры можно классифицировать по двум основным параметрам: разрядности и быстродействию. Быстродействие процессора - довольно простой параметр. Оно измеряется в мегагерцах (МГц); 1 МГц равен миллиону тактов в секунду. Чем выше быстродействие, тем лучше (тем быстрее процессор).Разрядность процессора - параметр более сложный. В процессор входит три важных устройства, основной характеристикой которых является разрядность:

    шина ввода и вывода данных;

    внутренние регистры;

    шина адреса памяти.

Шина данных

Когда говорят о шине процессора, чаще всего имеют в виду шину данных, представленную как набор соединений (или выводов) для передачи или приема данных. Чем больше сигналов одновременно поступает на шину, тем больше данных передается по ней за определенный интервал времени и тем быстрее она работает. Разрядность шины данных подобна количеству полос движения на скоростной автомагистрали; точно так же, как увеличение количества полос позволяет увеличить поток машин по трассе, увеличение разрядности позволяет повысить производительность.

Данные в компьютере передаются в виде цифр через одинаковые промежутки времени. Для передачи единичного бита данных в определенный временной интервал посылается сигнал напряжения высокого уровня (около 5 В), а для передачи нулевого бита данных - сигнал напряжения низкого уровня (около 0 В).

Чем больше линий, тем больше битов можно передать за одно и то же время. Современные процессоры типа Pentium имеют 64-разрядные внешние шины данных. Это означает, что процессоры Pentium, включая Pentium 4, Athlon и даже Itanium, могут передавать в системную память (или получать из нее) одновременно 64 бит данных.

Для ясности...

Представим себе, что шина - это автомагистраль с движущимися по ней автомобилями. Если автомагистраль имеет всего по одной полосе движения в каждую сторону, то по ней в одном направлении в определенный момент времени может проехать только одна машина. Если вы хотите увеличить пропускную способность дороги, например, вдвое, вам придется ее расширить, добавив еще по одной полосе движения в каждом направлении. Таким образом, 8-разрядную микросхему можно представить в виде однополосной автомагистрали, поскольку в каждый момент времени по ней проходит только один байт данных (один байт равен восьми битам). Аналогично, 32-разрядная шина данных может передавать одновременно четыре байта информации, а 64-разрядная подобна скоростной автостраде с восемью полосами движения.

Разрядность шины данных процессора определяет также разрядность банка памяти. Это означает, что 32-разрядный процессор, например класса 486, считывает из памяти или записывает в память 32 бита одновременно. Процессоры класса Pentium, включая, Celeron, Pentium 4, Athlon, считывают из памяти или записывают в память 64 бит одновременно. Разрядность модулей памяти DIMM равна 64, поэтому в системах класса Pentium устанавливают по одному модулю, что облегчает процесс конфигурирования системы, так как эти модули можно устанавливать или удалять по одному. Каждый модуль DIMM имеет такую же производительность, как и целый банк памяти в системах Pentium.




Top