Что такое протокол smtp. SMTP — простой протокол передачи почты. Сервисы и службы Интернет

Протокол - это набор правил, в соответствии с которым компы обмениваются информацией. Эти правила включают формат, время и последовательность передачи данных, способы контроля и коррекции ошибок.

Набор разнообразных протоколов, при помощи которых взаимодействуют между собой прикладные программы.

Протоколы прикладного уровня HTTP , FTP , SMTP , IMAP , POP 3, TELNET .

В соответствии с архитектурой клиент-сервер, прога делится на две части (одна работает на сервере, вторая - на компе пользователя), функционирующие как единое целое. Протоколы прикладного уровня описывают взаимодействие клиентской и серверной частью программы. Выделяют следующие наиболее известные прикладные протоколы:

HTTP (Hyper Text Transfer Protocol)- протокол передачи гипертекста, работает на 80 порту. Исп-ся в WWW для передачи гипертекстовых HTML-страниц. При работе по этому протоколу, каждый элемент HTML - страницы загружается отдельно, причем соединение между загрузками прерывается и никакой инф-ии о соединении не сохраняется. Это сделано для того, чтобы пользователя Web- страниц каждый получал "по чуть-чуть, в порядке общей очереди". В противном случае могла бы создаться ситуация, когда один человек качает страницу с большим количеством рисунков высокого разрешения, а все остальные ждут пока он это закончит.

FTP (File Transfer Protocol.) - протокол передачи файлов, работает на 20 и 21 порту. Предназначен для копирование файлов между компами. Полностью занимает канал, пока не будет получен файл, сохраняет информацию о соединении. При сбое возможна докачка с того места, где произошел сбой.

SMTP , IMAP -4, РОРЗ - почтовые протоколы (электронная почта). SMTP - 25 порт, IMAP-4 - 143 порт, РОРЗ - 110 порт. Отличие: SMTP - протокол расчитанный на доставку почты до конкретного получателя, РОРЗ и IMAP-4 - протоколы взаимодействия пользователя со своим почтовым ящиком на сервере. При использовании SMTP предполагается, что почтовый адрес указывает на комп конечного получателя, и на этом компе запущена специальная прога, которая принимает и обрабатывает почту. Однако чаще всего бывает, что почта не доставляется на комп каждого отдельного пользователя, а обрабатывается централизованно, на отдельном почтовом сервере. В таком случае, каждый пользователь имеет на почтовом сервере свой почтовый ящик. Почта доставляется до сервера по протоколу SMTP (конечный получатель - сервер) и помещается в почтовые ящики пользователей. Затем пользователи подключаются к своим почтовым ящикам по протоколу РОРЗ или IMAP-4 и забирают почту. Протокол РОРЗ требует полностью скачать себе всю почту, а затем разбираться: нужна она вам была или нет. Протокол IMAP-4 позволяет просматривать на сервере заголовки писем (указывается статус письма: новое, отвеченное и т.п.) и скачивать с сервера только необходимые письма или даже часть некоторого письма. IMAP4 дублирует функции почтовых программ пользователя.

4.TELNET - исп-ся для подключения и управления удаленным компом, работает на 23 порту. После подключения каждый символ, введенный на локальной машине, обрабатывается так, как если бы он был введен на удаленной машине. Либо может использоваться командный режим - управление удаленной машиной при помощи специальных команд.

Программирование сокетов.

Теперь рассмотрим процесс взаимодействия клиентской и серверной программ более подробно. В функции клиента входит инициирование соединения с сервером, а сервер должен быть готовым к установлению соединения. Это означает, что, во-первых, программа-сервер должна быть запущена раньше, чем клиент сделает попытку установить соединение, и, во-вторых, что сервер должен располагать со-кетом, с помощью которого устанавливается соединение.

Когда серверный процесс запущен, клиент может инициировать установку ТСР-соединения с сервером. Первым действием клиентской программы является создание сокета, при этом программа указывает адрес серверного процесса, состоящий из IP-адреса и номера порта процесса. После создания сокета клиентская сторона протокола TCP осуществляет процедуру тройного рукопожатия с сервером, оканчивающуюся установлением соединения. Заметим, что процедура рукопожатия никак не сказывается на работе приложения.

В ходе тройного рукопожатия клиентский процесс стучит во входную дверь серверного процесса. Когда сервер слышит стук, он создает новую дверь (то есть новый сокет), относящуюся к текущему клиенту.

В примере, который последует ниже, входной дверью является объект ServerSocket с именем welcomeSocket. Когда клиент стучит в эту дверь, вызывается метод accept() объекта welcomeSocket, создающий новую дверь для клиента. По окончании процедуры рукопожатия устанавливается TCP-соединение между сокетом клиента и новым сокетом сервера, который называют сокетом соединения.

С точки зрения приложения TCP-соединение является прямым виртуальным каналом между сокетами соединения клиента и сервера. Клиент может осуществлять передачу любых байтов через свой сокет, при этом протокол TCP гарантиру-ет, что сервер получит эти байты через свой сокет без искажений и в том же порядке, в каком они были переданы. Подобно тому как люди могут входить и выходить через одни и те же двери, клиент и сервер способны с помощью сокетов осуществлять прием и передачу информации.

Сервисы и службы Интернет.

В этом пункте мы даем краткую характеристику основным службам, которые в той или иной степени функционируют в составе современной глобальной Сети. В следующем пункте отдельно рассматривается "главная" служба Сети - "Всемирная паутина" (WWW).

Telnet. Этим термином обозначают протокол и программы, которые обслуживают удаленный доступ клиента к компу-серверу. После установления связи, пользователь попадает в среду операционной системы удаленного компа и работает с установленными на нем прогами так же, как если бы это был собственный комп пользователя.

FTP. Так называют протокол (File Transfer Protocol - протокол передачи файлов) и программы, которые обслуживают работу с каталогами и файлами удаленной машины. Средства FTP позволяют просматривать каталоги и файлы сервера, переходить из одного каталога в другой, копировать и обновлять файлы.

Archie. Так называют специальные серверы (Archie-серверы), которые собирают и хранят поисковую информацию о содержимом FTP- серверов на узлах Internet. Если вы ищите какой-то файл, имя которого (или часть имени) вам известно, надо запустить Archie-клиента, и он укажет вам адрес (адреса) соответсвующего FTP-сервера.

WAIS. Wide Area Information Servers - распределенная информационная система (база данных и программное обеспечение), которая обслуживает поиск инф-ии в сетевых БД и библиотеках. В частности, WAIS исп-ся для индексирования неструктурированных документов в Internet и организации поиска в них.

E-mail. Это английское обозначение электронной почты - основного вида сетевых услуг Internet. С помощью электронной почты люди, живущие на всех континентах, обмениваются электронными сообщениями и файлами.

Internet-телефония. Ныне быстро развивается новый вид услуг Сети Internet-телефония. Принцип голосовой связи в Internet нельзя считать оригинальным: такая связь - лишь частный случай обмена произвольными электронными сообщениями по протоколу TCP/IP. Человеческая речь преобразуется в цифровой файл (точно так же, как создаются аудиофайлы) и передается по сети в виде обычного набора электронных пакетов. Правда, пока единственным достоинством Internet-телефонии, по сравнению с обычным телефоном, явл-ся ее необычайная дешевизна (в расчете на минуту разговора). Многие технические проблемы (перегрузка каналов связи, задержки в передаче речи и др.) пока не решены.

26. Архитектура «клиент-сервер», «клиент-серверные» технологии. Распределенная обработка данных. Администрирование сервера баз данных. Web-технологии. Гипертекстовый документ. Язык гипертекстовой разметки HTML. Установка и настройка Web-сервера. Web-программирование с использованием скриптовых языков и баз данных.

Архитектура клиент-сервер.

Вообще говоря, клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети. По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить, конечно, о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов, подчеркну - файлов, а не базы данных. База данных существует только в "мозгу" рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Распределенная обработка данных

С точки зрения хронологии, взаимодействие между программами последовательно приобретало следующие формы:

Обмен: программы различных систем посылают друг другу сообщения (как правило, файлы);

Разделение: имеется непосредственный доступ к ресурсам нескольких машин (совместное пользование файлом, например);

Совместная работа: машины играют в реализации программы взаимодополняющие роли.

Рассмотрим пример, иллюстрирующий эту эволюцию. Речь пойдет о проектировании в области механики; традиционный подход заключается в следующем:

Построение "проволочной модели" (maillage) (графического представления геометрии физической модели) на рабочей станции;

Перенос на ЭВМ Cray файла модели, вводящего код вычислений;

Результаты расчетов, выполненных на ЭВМ Cray переносятся на рабочую станцию и обрабатываются графическим постпроцессором.

Этот способ обладает следующими недостатками:

Обмен данными производится посредством переноса файлов с одной машины на другую;

Обработка файлов осуществляется последовательно, в то время как расчеты на ЭВМ Cray только выиграли бы, если было бы возможно обеспечить взаимодействие с пользователем, используя графические и эргономические возможности рабочей станции, а некоторые расчеты, осуществляемые на последней, лучше было бы выполнить на машине Cray.

Для того, чтобы избавиться от этих неудобств, необходимо перейти от вышеназванных вариантов решения задач к применению методики совместной работы, на основе понятия "прозрачности". Пользователь будет видеть только одну машину (свою станцию) и только одну прикладную программу. Распределенная обработка данных, таким образом, представляет собой программу, выполнение которой осуществляется несколькими системами, объединенными в сеть. Как правило, расчетная часть программы выполняется на мощном процессоре, а визуальное отображение выводится на рабочей станции с улучшенной эргономичностью. Разделение опирается на модель "клиент-сервер", к которой мы еще вернемся. Этот вид обработки данных организуется по принципу треугольника (рис.2.4.):

Пользователь обладает рабочей станцией;

Решение задач требует обращения к устройству обработки данных (спецпроцессору, например) и к серверу данных, и все это прозрачно для пользователя.

Рис 2.4. Треугольная организация вычислительного процесса

Цели распределенной обработки данных

Целью распределенной обработки данных является оптимизация использования ресурсов и упрощение работы пользователя (что может вылиться в усложнение работы разработчика). Каким образом?

Оптимизация использования ресурсов.

Термин ресурс, в данном случае используется в самом широком смысле: мощность обработки (процессоры), емкость накопителей (память или диски), графические возможности (2-х или 3-х мерный графический процессор, в сочетании с растровым дисплеем и общей памятью), периферийные устройства вывода на бумажный но- ситель (принтеры, плоттеры). Эти ресурсы редко бывают собраны на одной машине: ЭВМ Cray обладает мощными расчетными возможностями, но не имеет графических возможностей, а также возможностей эффективного управления данными. Отсюда принцип совместной работы различных систем, используя лучшие качества каждой из них, причем пользователь имеет их в распоряжении при выполнении только одной программы.

Упрощение работы пользователя.

Действительно, распределенная обработка данных позволяет:

Повысить эффективность посредством распределения данных и видов обработки между машинами, способными наилучшим образом управлять ими;

Предложить новые возможности, вытекающие из повышения эффективности;

Повысить удобство пользования. Пользователю более нет необходимости разбираться в различных системах и осуществлять перенос файлов.

Основные недостатки этого подхода заключаются в следующем: - зависимость от характеристик и доступности сети. Программа не сможет работать, если сеть повреждена. Если сеть перегружена, эффективность уменьшается, а время реакции систем увеличивается. - проблемы безопасности. При использовании нескольких систем увеличивается риск, так как появляется зависимость от наименее надежной машины сети.

C другой стороны, преимущества весьма ощутимы:

Распределение и оптимизация использования ресурсов. Это основная причина внедрения распределенной обработки данных;

Новые функциональные возможности и повышение эффективности при решении задач;

Гибкость и доступность. В случае поломки одной из машин, ее пытаются заменить другой, способной выполнять те же функции.

SMTP (Simple Message Transfer Protocol), или в дословном переводе простой протокол передачи сообщений, был рожден в среде UNIX и предназначался исключительно для общения между собой почтовых серверов. В терминах модели OSI протокол SMTP находится на уровне приложений.

В настоящее время SMTP стал стандартом де-факто. В большой степени такая популярность объясняется сравнительной простотой реализации и широкими возможностями расширяемости без ущерба для обратной совместимости с существующими версиями почтовых систем. Немаловажным фактором является также широкая доступность спецификаций и отсутствие необходимости отчислять средства за их использование.

SMTP-системы за последнее время активно развивались в следующих направлениях:

расширение протокола общения сервер-сервер (собственно SMTP);

создание и улучшение протокола общения клиент-сервер (POP3, IMAP4);

внедрение и расширение нового формата сообщений (MIME).

Начальная версия протокола SMTP поддерживала ограниченный набор команд и сервисов для приема и передачи сообщений. В последнее время был разработан его расширенный вариант (Extended или ESMTP), обеспечивающий стандартную возможность дальнейшего расширения и поддержку таких функций как подтверждение доставки (Delivery Notification Request или DNR), согласование максимального допустимого размера сообщений, передаваемых между серверами и принудительная инициация передачи накопленной почты (dequeue). Однако одной из слабых сторон на данный момент SMTP было и продолжает быть отсутствие возможности аутентификации входящих соединений, шифрования диалога и потока передачи данных между серверами.

Отсутствие средств аутентификации входящих соединений не позволило использовать SMTP для обслуживания клиентского доступа. Классическая почтовая SMTP-система требует наличия файлового доступа клиента к своему почтовому ящику для получения и работы с сообщениями. Для реализации работы в режиме клиент-сервер был создан протокол обслуживания почтового офиса (Post Office Protocol или POP). Наиболее удачной оказалась версия POP3, широко используемая в современных SMTP-системах. Наиболее продвинутые реализации поддерживают аутентификацию с шифрованием имени и пароля и шифрование трафика по протоколу Secure Socket Layer (SSL). Однако, при использовании протокола POP3 отсутствует возможность просмотра характеристик сообщения без предварительной загрузки его на станцию клиента. Для решения проблемы просмотра и манипуляции свойствами почтового сообщения непосредственно на сервере, а также преодоления ряда других функциональных ограничений был разработан протокол IMAP 4, его поддержка в большинстве коммерческих систем ожидается в ближайшем будущем. Следует заметить, что как для случая использования классического клиента (команда mail), так и для случая применения POP3 или IMAP4 отправка подготовленных клиентом сообщений требует наличия сервера SMTP. На рисунке 1.6 приведена схема представления типичной SMTP-системы, использующей как традиционный для ОС UNIX файловый метод доступа к почтовому ящику, так и доступ по протоколам POP3 и IMAP4.

Изначально SMTP-системы рассчитывались на передачу информации исключительно в текстовом виде и не были ориентированы на передачу символов национальных алфавитов, т.е. использовали 7-битный набор символов. Для решения проблемы передачи двоичных файлов был разработан стандарт UUENCODE, позволяющий внедрять предварительно преобразованные из бинарного в текстовый вид произвольные данные непосредственно в текст сообщения. Однако всеобъемлющим данный подход назвать было трудно, ибо в общем случае никакой информации о природе вложения (типе передаваемых данных и породившем их приложении) принимающая сторона не имела. По мере расширения сети Internet, усложнения программного обеспечения и активного внедрения мультимедиа назрела необходимость создания универсального формата типизации и представления двоичных данных и текста, содержащего национальные символы. Таким универсальным форматом стали многофункциональные расширения почты Internet (Multipurpose Internet Mail Extensions или MIME). Формат MIME оказался чрезвычайно удачным, поскольку в него были заложены возможности неограниченного расширения, как поддерживаемых типов данных, так и национальных кодировок.


Схема типичной SMTP-системы с поддержкой POP3 и IMAP4

Сообщение SMTP, подобно сообщению X.400, использует понятия конверта и содержимого, которое в свою очередь имеет заголовок и тело. Функциональное назначение их полностью идентично. Состав полей в заголовке определяется форматом тела сообщения (UUENCODE или MIME). Ни одно поле не является обязательным, но, как правило, указываются такие поля как, кому (To:), от кого (From:) и тема (Subject:). В случае использования формата MIME, в заголовке обязательно должна присутствовать строка "MIME-Version: 1.0". Полный перечень возможных полей в заголовке сообщения SMTP содержится в RFC 2076.

Отличительной особенностью SMTP-систем является то, что в них, как правило, обеспечивается фактическая независимость процесса передачи от формата содержимого. За интерпретацию содержимого должна отвечать только клиентская программа (mail reader). Однако платой за совместимость на уровне MTA в данном случае является неэффективность передачи любых нетекстовых данных или сообщений, использующих символы национальных алфавитов, вследствие предварительной трансляции информации в текстовое представление. В зависимости от используемого алгоритма преобразования размер фактически передаваемых данных может возрасти на 30-100%.

Немаловажной проблемой при передаче данных через SMTP-системы является обеспечение конфиденциальности. Поскольку сообщения передаются в текстовом виде, они могут быть легко перехвачены и произвольным образом изменены. Для решения проблем с защитой информации был создан стандарт на шифрование тела сообщения, так называемый засекреченные многофункциональные расширения почты (Secure MIME или S/MIME). Однако, этот протокол не в состоянии защитить от перехвата заголовки сообщений.

Simple Mail Transfer Protocol не зависит от транспортной среды и может использоваться для доставки почты в сетях с протоколами, отличными от TCP/IP и Х.25. Достигается это за счет концепции IPCE (InterProcess Communication Environment). IPCE позволяет взаимодействовать процессам, поддерживающим SMTP в интерактивном режиме, а не в режиме "STOP-GO".

Модель протокола. Взаимодействие в рамках SMTP строится по принципу двусторонней связи, которая устанавливается между отправителем и получателем почтового сообщения. При этом отправитель инициирует соединение и посылает запросы на обслуживание, а получатель на эти запросы отвечает. Фактически, отправитель выступает в роли клиента, а получатель - сервера.


Схема взаимодействия по протоколу SMTP

Канал связи устанавливается непосредственно между отправителем и получателем сообщения. При таком взаимодействии почта достигает абонента в течение нескольких секунд после отправки.

Одним из основных элементов является конфигурация SMTP-сервера. Рассмотрим, что это такое и как произвести нужные настройки для различных ситуаций.

Что такое SMTP?

Сокращение SMTP происходит от английского словосочетания , что в переводе означает «простой протокол отправки почты». В основном область его применения ограничивается сетями на основе TCP/IP и пользовательским уровнем.

В любой мейл-программе, часто называемой почтовым клиентом, имеются специальные настройки, позволяющие сконфигурировать параметры протокола. Именно его посредством все электронные письма отправляются на почтовый сервер, где ожидают ретрансляции. Изначально SMTP-сервер использует TCP-порт под номером 25. Однако с развитием сервисов электронной почты настройки могут существенно изменяться.

Нужна ли настройка сервера при отправке письма с почтового сервиса?

Как правило, любой почтовый сервис в интернете, предлагающий пользователям услуги по отправке и получению электронной корреспонденции, уже оснащен заранее настроенным SMTP-сервером. То есть пользователю производить ничего не нужно.

Сами же сервисы для входа в собственный почтовый ящик требуют от пользователя только ввода логина и пароля, указанных при регистрации, и настраивать, например, SMTP-сервер Mail.Ru не требуется всего лишь по той причине, что в самом сервисе все это было сделано изначально (без этого служба просто не работала бы). Но что делать, если пользователь интернет-ресурсами по какой-то причине не пользуется, а предпочитает стандартные клиенты вроде майкрософтовских Outlook Express и Outlook или сторонние программные продукты, имея при этом зарегистрированный ящик именно в интернет-сервисе?

Настраиваем сервер SMTP (Mail.Ru - почтовый сервис, где зарегистрирован ящик)

Посмотрим на стандартные параметры, которые следует применить к данному сервису. Вне зависимости от используемого почтового клиента абсолютно все настройки будут идентичными.

Итак, для того чтобы правильно сконфигурировать SMTP-сервер Mail.Ru, следует задать следующие параметры:

  • сервер исходящей корреспонденции - smtp.mail.ru;
  • имя юзера - полное название зарегистрированного в сервисе адреса электронной почты;
  • пароль - текущее кодовое сочетание литер, цифр и символов, используемое для входа в ящик;
  • порт при выборе протокола шифрования SSL/TLS - 465.

После вступления в силу этих настроек почту можно будет принимать непосредственно в используемой пользовательской программе. Как видим, порт SMTP-сервера отличается от стандартного (25), но это связано уже с протоколами TCP/IP.

Настраиваем сервер SMTP на Yandex

Не менее популярным является и сервис Yandex.Ru. SMTP-сервер для него настраивается полностью аналогичным образом.

Однако для сервера исходящих сообщений применяется адрес smtp.yandex.ru, для порта указывается значение 465, но в настройках защиты устанавливается исключительно TLS.

Устанавливаем SMTP-сервер для рассылки

Теперь перейдем к более сложным ситуациям, когда пользователю по каким-либо причинам (например, для раскрутки собственного бизнеса или сайта) нужно осуществлять массовую рассылку. Заниматься этим вручную с использованием онлайн-сервисов или почтовых клиентов нет смысла хотя бы по той причине, что это занимает слишком много времени и сил. Поэтому можно поступить двояким способом - купить уже готовый настроенный SMTP-сервер или настроить его самому.

В первом случае, если приобретается «белый» сервер, это потребует весомых затрат, а также соблюдения всех условий разработчика или продавца. Можно, конечно, приобрести «серый» сервер, однако здесь нет гарантии, что он не будет внесен в спам-базы поисковых систем. Чревато это только тем, что тот же Yandex при поступлении писем с указанных источников будет просто фильтровать их и отправлять в раздел спама, а Mail.Ru и Google помечают корреспонденцию соответствующим индексом «спамности». Настройка же SMTP-сервера вручную выглядит и более надежной, и более экономной в плане финансовых затрат.

Для начала нужно приобрести сервер VPS с операционной системой Centos версии не ниже шестой. Сразу обратите внимание, есть ли возможность ввода записи PTR, которая позволит точно идентифицировать каноническое имя домена принимающим сервером.

Далее нужно установить панель Vesta. В качестве примера используем утилиту PuTTY, которую нужно скачать, установить и запустить. В настройках сразу прописываем IP-адрес сервера, далее жмем кнопку Open и прописываем логин root и пароль, предоставленный при покупке VPS-сервера.

Теперь последовательно вводим следующие команды:

curl -O http://vestacp.com/pub/vst-install.sh

bash vst-install.sh

Если возникает ошибка, решаем ее при помощи сочетания:

bash vst-install-rhel.sh —force

После этого вводим действительный адрес электронного ящика и название хоста. Через 5-10 минут панель установится.

https://IP сервера:8083

Возникает окно, где нужно ввести имя пользователя root и предоставленный пароль.

На следующем этапе регистрируем домен и переходим в панель параметров DNS, где меняем местами и A.

Ждем, пока произойдет обновление DNS-зон, и переходим на вкладку WEB в панели Vesta, где добавляем зарегистрированный домен.

После этого регистрируем аккаунты SMTP в разделе Mail. Для проверки в том же разделе используем вкладку Open Webmail. В появившемся окне EXIM-сервера вводим параметры созданного SMTP и отправляем пробное письмо. Если все нормально, можно себя поздравить.

Обратите внимание, что в некоторых случаях для массовой рассылки может потребоваться наличие цифровой подписи (не путать с записью PTR, которая отвечает только за подлинность домена или хоста). При ее отсутствии некоторые принимающие службы могут отнестись к рассылке недоверительно, а сама входящая корреспонденция будет помечена как сомнительная. Так что об этом нужно позаботиться заранее.

Вместо послесловия

Остается добавить, что настройка SMTP-сервера для почтовых клиентов не так уж сложна, как это могло показаться вначале. Но вот для массовых рассылок над настройкой придется, что называется, попотеть. И использовать можно не только тот вариант, который был представлен выше. Некоторые разработчики уже сегодня предлагают автоматизированные системы создания и настройки таких серверов за весьма умеренную плату (а то и вообще бесплатно).

Сегодня мы подробно расскажем про наиболее используемые в сети интернет протоколы – POP3, IMAP и SMTP. Каждый из указанных протоколов имеет определенное назначение и функциональные возможности. Давайте попробуем разобраться.

Протокол POP3 и его порты

Post Office Protocol 3 (POP3) это стандартный протокол почты созданные для получения электронных писем с удаленного сервера на e-mail клиент.POP3 позволяет вам сохранить почтовое сообщение на ваш компьютер и даже прочесть его, в случае, если вы находитесь не в сети. Важно отметить, что если вы решили использовать POP3 для подключения к учетной записи почты, письма, которые уже скачаны на компьютер, будут удалены с почтового сервера. Как пример, если вы используете несколько компьютеров для подключения к одному почтовому аккаунту, то протокол POP3 может быть не лучшим выбором в данной ситуации. С другой стороны, так как почта хранится локально, на ПК конкретного пользователя, это позволяет оптимизировать дисковое пространство на стороне почтового сервера.

По умолчанию, протокол POP3 использует следующие порты:

  • Порт 110 – это порт протокола POP3 по умолчанию. Не является безопасным.
  • Порт 995 – этот порт следует использовать в том случае, если вы хотите установить безопасное соединение.

Протокол IMAP и порты

Internet Message Access Protocol (IMAP) – это почтовый протокол, созданный для доступа к почте с локального почтового клиента. IMAP и POP3 – наиболее популярные в сети интернет протоколы, используемые для получения e-mail. Оба этих протокола поддерживается всеми современными почтовыми клиентами (MUA - Mail User Agent) и WEB – серверами.

В то время как POP3 позволяет доступ к почте только с одного приложения, IMAP позволяет доступ из множества клиентов. По этой причине, IMAP наиболее адаптивен в тех случаях, когда доступ к одному почтовому аккаунту необходим для нескольких пользователей.

По умолчанию, протокол IMAP использует следующие порты:

  • Порт 143 – порт по умолчанию. Не безопасен.
  • Порт 993 – порт для безопасного соединения.
Протокол SMTP и его порты

Simple Mail Transfer Protocol (SMTP) – это стандартный протокол для отправки почтовых сообщений по сети интернет.

Данный протокол описан в RFC 821 и RFC 822, впервые опубликованных в августе 1982 года. В рамках данных RFC, формат адреса должен быть в формате имя_пользователя@доменное_имя . Доставка почты, аналогична работе обычной почтовой службы: например, письмо на адрес [email protected], будет интерпретирован так: ivan_ivanov – адрес, а merionet.ru – почтовый индекс. Если доменное имя получателя отличается от доменного имени отправителя, то MSA (Mail Submission Agent) отправит письмо через Mail Transfer Agent (MTA). Главная идея MTA в том, чтобы перенаправлять письма в другую доменную зону, по аналогии, как традиционная почты отправляет письма в другой город или область. MTA так же получает почту от других MTA.

Протокол SMTP использует следующие порты.

SMTP (Simple Mail Transfer Protocol - простой протокол передачи почты) - это сетевой протокол, предназначенный для передачи электронной почты в сетях TCP/IP. ESMTP (англ. Extended SMTP) - масштабируемое расширение протокола SMTP. В настоящее время под «протоколом SMTP», как правило, подразумевают ESMTP и его расширения. SMTP использует порт Порты TCP 25.

Протокол SMTP использует простые текстовые команды в формате ASCII и возвращает трехзначные кодированные ответы с текстовыми сообщениями. Протокол SMTP описывается документом Internet Request For Comment (RFC) номер 821, который был разработан группой Internet Engineering Task Force (IETF) и опубликован 21 августа 1982 года. С тех пор он претерпел несколько модификаций, но в целом основные команды протокола не изменились.

Основные команды клиента SMTP

Команда HELO

По определению, длина команд протокола SMTP четыре символа. Приветствие, выдаваемое клиентом на сервер, и есть команда HELO. Формат команды следующий:

HELO domain name

Смысл команды HELO заключается в представлении клиента серверу SMTP. К сожалению, этот метод доступа был разработан на начальной стадии развития сети Internet, когда еще не было столь большого числа попыток несанкционированного проникновения в компьютерные системы. Как видите, клиент может назвать себя любым именем в командной строке. Это привело к тому, что в настоящее время большинство серверов SMTP эту команду используют чисто формально. Если они действительно стараются идентифицировать клиента, то подключается механизм обратного преобразования DNS с целью определения действительного имени хоста клиента согласно системе доменных имен по его IP-адресу. Как правило, в целях безопасности серверы SMTP отказывают в установлении соединения хостам, IP-адрес которых не преобразуется в соответствующее имя хоста. Посылая данную команду, клиент уведомляет сервер о желании установить с ним соединение. Отвечая на эту команду, сервер, в свою очередь, уведомляет об установке нового соединения с клиентом и готовности принимать от него последующие команды.

При работе с протоколом SMTP следует различать клиентов SMTP. Пользователи-клиенты и хосты-клиенты не одно и то же. При создании почтового сообщения пользователь системы электронной почты является одновременно и клиентом своего локального хоста. После отправки почтового сообщения он уже не является клиентом процесса SMTP. Теперь его локальный хост-компьютер осуществляет процесс доставки сообщения и сам выступает в качестве клиента SMTP. Когда локальный хост соединяется с удаленным хостом для передачи сообщения с помощью протокола SMTP, он действует как клиент SMTP-процесса. Команда HELO объявляет в качестве клиента имя локального хоста, а не реального пользователя, отославшего сообщение. Довольно часто эти понятия путают, что усложняет решение проблем, возникающих в системах электронной почты.

Команда AUTH

Расширение диалога SMTP командой AUTH описывается в RFC 4954.

    PLAIN (Uses Base64 encoding.)

    LOGIN (Uses Base64 encoding.)

    GSSAPI (Generic Security Services Application Program Interface)

    DIGEST-MD5 (Digest access authentication)

Разница между PLAIN и LOGIN только в том, что в первом варианте передается логин+пароль одной строкой, а во втором варианте - сначала логин, затем пароль. Но все они кодируются обязательно в Base64 .

Команда MAIL

Команда MAIL используется для организации сеанса обмена электронной почтой с сервером после того, как была послана команда HELO. Она указывает, от кого исходит данное сообщение. Формат команды MAIL следующий:

MAIL reverse-path

Аргумент reverse-path не только определяет отправителя сообщения, но также указывает маршрут, по которому можно вернуть сообщение в случае невозможности его доставки. Если отправитель является пользователем на клиентском компьютере, который инициировал сеанс SMTP, то формат команды будет следующим:

MAIL FROM: [email protected]

Заметьте, что в поле FROM указывается адрес электронной почты отправителя сообщения, включая полное имя клиентского хост-компьютера. Эта информация должна присутствовать в поле FROM почтового сообщения (но об этом позже). Если почтовое сообщение проходило на пути от отправителя к получателю через несколько узлов, то каждый из них будет добавлять сведения о себе в поле . Таким образом документируется путь прохождения сообщения через почтовые серверы. Довольно часто электронная почта от клиентов частных сетей должна проходить через несколько серверов электронной почты, прежде чем попасть в сеть Internet. Информация, которая содержится в поле reverse-path часто полезна при разрешении проблем в системах электронной почты или для обнаружения почтовых серверов, которые пытаются скрыть свою принадлежность, посылая сообщения через неизвестные серверы SMTP.

Команда RCPT

Команда RCPT определяет получателей сообщения. Одно и то же сообщение могут получать несколько пользователей. Обычно каждый получатель указывается отдельной строкой с командой RCPT. Формат команды RCPT следующий:

RCPT forward-path

Аргумент forward-path определяет, куда направляется электронная почта. Как правило, здесь указывается полный адрес электронной почты, но может также указываться и имя пользователя локального сервера SMTP. Рассмотрим для примера следующую команду:

RCPT TO: haley

С помощью этой команды указывается, что сообщение должно быть направлено пользователю haley на сервер SMTP, который обрабатывает сообщения. Таким же образом можно посылать сообщения и пользователям других компьютеров, которые не являются пользователями сервера SMTP, куда направлено сообщение. Рассмотрим, например, следующую команду:

RCPT TO: [email protected]

Команда, направленная серверу SMTP с именем shardrach.smallorg.org, вынуждает принять решение о доставке сообщения именно этот сервер. Так как пользователь не зарегистрирован на локальном сервере shardrach, то серверу придется определить, что делать с сообщением дальше. В этом случае возможны три варианта действий хоста shardrach. Давайте остановимся на них подробнее.

    Хост shardrach может переслать сообщение получателю и возвратить утвердительный ответ отправителю (OK). В этом случае он добавляет свое имя в поле команды MAIL, чтобы включить его в маршрут прохождения сообщения при необходимости уведомить отправителя.

    Хост shardrach не может переслать сообщение и уведомляет об этом отправителя, подтверждая в то же время правильность адреса хоста meshach.smallorg.org. Таким образом, отправитель может попытаться повторно отправить сообщение прямо на meshach.smallorg.org.

    Хост shardrach не может переслать сообщение и посылает уведомление о том, что эту операцию невозможно осуществить с данным сервером. Тогда причины случившегося следует проанализировать системному администратору.

На начальной стадии развития сети Internet практиковалась пересылка сообщений электронной почты вслепую между компьютерами по всему миру, в которых использовался исходный алгоритм передачи почтовых сообщений.

Команда DATA

Эта команда является основной в протоколе SMTP. После обработки команд MAIL и RCPT команда DATA используется для передачи информационной части сообщения. Формат команды DATA следующий:

Все, что следует за этой командой, интерпретируется как сообщение для передачи. Сервер SMTP, как правило, дополняет заголовок сообщения меткой времени и информацией об обратном маршруте return-path. Программа-клиент обозначает конец сообщения посредством передачи строки с одной точкой. Формат этой строки следующий:

.

Приняв эту последовательность, сервер SMTP "понимает", что передача сообщения закончена и следует вернуть код ответа, который оповестит клиента о том, что его сообщение принято.

Команда SEND

Команда SEND используется для передачи почтовых сообщений непосредственно на терминал зарегистрированного пользователя системы. Эта команда выполняется только в том случае, когда пользователь находится в системе, и обычно представляет собой всплывающее сообщение, подобно команде write в ОС UNIX. У этой команды имеется серьезный недостаток: с ее помощью внешний пользователь может легко определить, кто в данный момент находится в системе. Эта "возможность" давно и активно эксплуатируется хакерами для получения идентификаторов пользователя в сети Internet у ничего не подозревающих жертв, находящихся в системе. Из-за угрозы безопасности в настоящее время большинство программных пакетов для работы с SMTP уже не содержат эту команду.

Команда RSET

Команда RSET - сокращение от reset (англ. сброс - Прим. пер.). Если клиент запутался в ответах, получаемых от сервера, или решил, что соединение потеряно, он может послать команду RSET и вернуть сеанс к его начальной точке - выполнению команды HELO. При этом все ранее посланные команды - MAIL, RCPT и DATA будут аннулированы. Очень часто к этой команде прибегают в качестве "последнего средства", когда клиент либо потерял последовательность команд, либо получил неожиданный ответ от сервера.

VRFY

Команда VRFY является сокращением от verify (англ. проверить - Прим. пер.). Ее можно использовать для определения возможности доставки сервером почты определенному получателю перед выполнением команды RCPT. Формат этой команды следующий:

VRFY username

По принятии данной команды сервер SMTP определяет, имеется ли у него на локальном сервере пользователь с заданным именем. Если такой пользователь найден, то сервер вернет ответ с полным почтовым адресом пользователя. Если такого пользователя нет на локальном сервере, то SMTP-сервер может либо вернуть негативный ответ клиенту, либо указать, что он будет пересылать все сообщения удаленному пользователю. Это зависит от того, будет ли сервер SMTP пересылать сообщения удаленному клиенту.

Команда VRFY может оказаться эффективным инструментом при поиске неполадок в работе электронной почты. Довольно часто, отправляя почтовые сообщения, пользователи ошибаются при написании имени адресата или хоста и затем недоумевают, почему их сообщения не были получены. Конечно, первое, что они предпримут, - это пожалуются администратору почтовой системы на отвратительную работу системы электронной почты. Как администратор почтовой системы вы, можете проверить работоспособность адресов электронной почты двумя путями. Во-первых, с помощью команды DNS host, которая позволяет определить правильность доменного имени и наличие почтового сервера, обслуживающего домен. И во-вторых, можно зайти с помощью telnet на порт 25 почтового сервера и затем задать команду VRFY, которая определит правильность имени пользователя. В листинге 5.3 показан пример использования команды VRFY для проверки имен пользователей.

1 [ riley@ shadrach riley] $ telnet localhost 25 2 Trying 127.0.0.1... 3 Connected to localhost. 4 Escape character is "^]" . 5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/ 8.9.3; Thu, 26 Aug 1999 19 :20 :16 -050 6 HELO localhost 7 250 shadrach.smallorg.org Hello localhost [ 127.0.0.1] , pleased to meet you 8 VRFY rich 9 250 < rich@ shadrach,smallorg.org> 10 VRFY prez@ mechach.smallorg.org 11 252 < prez@ mechach.smallorg.org> 12 VRFY jessica 13 550 jessica... User unknown 14 QUIT 15 221 shadrach.smallorg.org closing connection 16 Connection closed by -foreign host. 17 [ riley@ shadrach riley] $

В строках 8–13 представлены результаты выполнения команды VRFY. В строке 8 делается попытка выполнить VRFY для локального пользователя rich. Ответ SMTP- сервера в строке 9 подтверждает, что пользователь с таким именем имеется в системе, и клиенту возвращается его полный адрес электронной почты. В строке 10 показан еще один вариант задания команды VRFY. Здесь клиент пытается выполнить команду VRFY для пользователя на удаленном компьютере. Ответ, полученный в строке 11 от системы shadrach, отличается от результата, полученного в строке 9. В разделе "Ответы сервера" значения кодов, возвращаемых сервером, обсуждаются более детально. В нашем случае отметим, что система shadrach уведомляет клиента о том, что почта будет пересылаться пользователю prez на удаленном сервере meshach.smallorg.org. Строка 12 отображает попытку проверить несуществующее имя в системе meshach. Ответ SMTP-сервера в строке 13 в пояснениях не нуждается.

    Проверить существования пользователя используя bash и curl. $ echo -e "VRFY [email protected]\n QUIT" | curl telnet:// mail.example.com:25 220 mail.1-talk.com ESMTP Postfix 252 2.0.0 username@ example.com 221 2.0.0 Bye

Команда NOOP

Команда NOOP - сокращение от no operation (англ. нет операции - Прим. пер.). Эта команда не оказывает никакого воздействия на SMTP-сервер, за исключением того, что сервер возвращает на нее позитивный код ответа. Она используется при тестировании соединения без пересылки сообщения.

Команда QUIT

Команда QUIT делает именно то, что она и означает (англ. выйти - Прим. пер.), т.е. сообщает SMTP-серверу о том, что клиентский компьютер закончил текущий сеанс и хочет закрыть соединение. Сервер SMTP должен ответить на эту команду, а затем инициировать и закрыть TCP-соединение. Если сервер принимает команду QUIT в процессе передачи почты, то все переданные в течение сеанса данные должны быть уничтожены и не поступят получателю.

Формат сообщений(EMail)

Стандартные поля заголовка, согласно RFC 822

Документом RFC 822 предусматривается разбиение сообщения на две части. Первая часть называется заголовком. В нее вносятся все данные, идентифицирующие сообщение. Вторая часть называется телом сообщения. Заголовок состоит из полей данных, которые используются по мере необходимости внесения дополнительной информации в сообщение. Поля заголовка и тело сообщения должны разделяться пустой строкой. Для полей заголовка не существует определенного порядка следования, т.е. поля заголовка могут располагаться в произвольном порядке. Кроме того, в одном сообщении поля заголовка могут повторяться. На рисунке представлен общий вид почтового сообщения, соответствующего требованиям RFC 822.

Формат сообщения, согласно RFC 822

    Поле заголовка Received

Формат поля заголовка Received: (Принято:) следующий:

Received: from host name by host name via physical-path with protocol id message-id for final e-mail destination

Поле заголовка Received используется для идентификации SMTP-серверов, которые принимали участие в процессе доставки сообщения от отправителя получателю. Каждый сервер добавляет к почтовому сообщению свое поле Received, с указанием специфических сведений о себе. Субполя в поле Received указывают на путь, протокол и компьютеры, принимавшие участие в передаче сообщения.

    Поле заголовка Return-Path

Формат этого поля заголовка следующий:

Return-Path: route

Последний SMTP-сервер в цепочке пересылки добавляет к сообщению поле возврата (Return-Path). Его цель - определение маршрута, посредством которого сообщение достигло получателя. Если сообщение было послано напрямую на сервер получателя, то в этом поле будет отображаться только один адрес. В противном случае здесь будет отображаться полный список серверов, через которые прошло сообщение, чтобы достичь адресата. Может отличаться от MAIL FROM (то есть обратный адрес может быть указан отличным от адреса отправителя).

    Поле заголовка Originator

В поле Originator указывается адрес отправителя сообщения. Эта информация весьма полезна в ситуации, когда сообщения были отвергнуты несколько раз частными сетями, прежде чем они попали в сеть Internet. Формат этого поля следующий:

Reply-To: address

Поле Originator является всего лишь небольшим вспомогательным полем в многоцветье полей заголовка. Оно может быть использовано в качестве более простого пути для небольших SMTP-пакетов. При этом необходимость в более сложных полях заголовка, по которым определяется отправитель, отпадает.

    Поле заголовка Resent

Поле заголовка Resent идентифицирует почтовое сообщение, которое по какой-либо причине должно было повторно посылаться клиентом. Формат этого поля следующий:

Resent-Reply-To: address

    Поля заголовка Authentic

Данные поля заголовка идентифицируют отправителя электронного сообщения. Формат полей Authentic:

From: user-name Sender: user-name

Поле From:(От:) идентифицирует автора сообщения. Обычно в полях From: и Sender:(Отправитель:) указывается один и тот же пользователь, так что в действительности требуется только одно из этих полей. В том случае, когда отправитель почты не является автором сообщения, а оно лишь посылается с его адреса, оба поля все равно должны быть указаны - этим обеспечивается возврат сообщения отправителю, если доставка его адресату оказалась невозможной. Поля заголовка Resent-authentic

Поля Resent-authentic определяют отправителя сообщения, которое по какой-либо причине повторно передавалось программой-клиентом. Формат этих полей следующий:

Resent-From: date-time Resent-Sender: date-time Поля Resent-From: и Resent-Sender: работают подобно полям From: и Sender:. Они лишь отражают, что сообщение было повторно передано клиентом по неизвестной причине.

Поля заголовка Dates

Поля заголовка Dates используются для помещения метки времени в сообщение при передаче его от клиента серверу. Формат полей Dates следующий:

Date: date-time Resent-Date: date-time Поле Date: (Дата) будет пересылать информацию в заголовке сообщения в точном соответствии с оригиналом сообщения. Этот параметр может оказаться полезным при отслеживании времени получения ответов, в особенности - множественных ответов.

    Поля заголовка Destination

В полях заголовка Destination указываются адреса электронной почты получателей сообщения. Эти поля являются чисто информационными. Сервер SMTP в любом случае не будет посылать сообщение в почтовый ящик пользователя, пока на получит команду RCPT, выданную для данного пользователя (см. раздел "Основные команды клиента SMTP"). Формат этих полей следующий:

To: address Resent-To: address CC: address Resent-CC: address BCC: address Resent-BCC: address

Поля To:, CC: и BCC: устанавливают стандартный алгоритм обработки электронной почты. Большинство пакетов для работы с электронной почтой используют именно эту терминологию для классификации получателей сообщения. Поле CC: сходно с памяткой, и указанные в нем получатели должны получить "копию" сообщения. Еще одно новое понятие, введенное системами электронной почты, - BCC: или "невидимая копия" (blind carbon copy). В поле "невидимой копии" также указывается получатель копии сообщения, но его адрес не виден посторонним (это не совсем этично). В связи с этой опцией обсуждалась вопросы компьютерной этики, но на сегодняшний день практически все программы для работы с электронной почтой поддерживают эту возможность.

    Необязательные поля заголовка

Необязательными являются поля, которые более подробно идентифицируют сообщение для сервера SMTP, но, согласно RFC 822, могут и не присутствовать в сообщении. Тем не менее эти поля в настоящее время широко распространены, и многим из вас придется столкнуться с ними. Формат некоторых из них следующий:

Message-ID: message-id Resent-Message-ID: message-id In-Reply-To: message-id References: message-id Keywords: text - list Subject: text Comments: text Encrypted: word

Наиболее полезным и часто используемым из этого набора является поле Subject: (Тема). Большинство программ для работы с электронной почтой допускает ввод отправителем темы сообщения в одну строку, которая описывает для получателя содержание сообщения. Эта строка текста довольно часто используется почтовой программой-клиентом при формировании списков полученных сообщений. Еще одно необязательное поле также помогает идентифицировать почтовое сообщение. Это поле Message-ID: (Идентификатор сообщения). В этом поле сообщению присваивается уникальный идентификационный номер, который может затем отображаться в возвращенном сообщении. Специальное поле шифрования Encrypted: указывает, было ли сообщение в целях безопасности подвергнуто шифрованию, а в Keywords: можно задать ключевые слова, которые можно использовать при поиске определенного текста, встречающегося в сообщении (сообщениях).

Двоичные данные и MIME

В алгоритме кодирования MIME учитывается тип двоичного файла, подвергающегося преобразованию, а также передается дополнительная информация о файле для декодера. Алгоритм MIME позволяет помещать двоичные данные напрямую в стандартное почтовое сообщение, согласно RFC 822. Для описания двоичных данных, вкладываемых в сообщение формата RFC 822, были созданы пять новых полей заголовка. Программы для работы с почтой, которые поддерживают стандарт MIME, должны правильно обрабатывать все эти новые типы заголовков.

    Поле заголовка MIME-Version

Первое из дополнительных полей заголовка содержит версию MIME, которую использовал отправитель при кодировании сообщения. В настоящее время в этом поле всегда 1.0.

    Поле Content-Transfer-Encoding

В поле заголовка Content-Transfer-Encoding указывается способ помещения двоичных данных в сообщение текстового формата ASCII . На сегодняшний день существует семь различных способов кодирования двоичных данных, однако наиболее часто встречается кодирование base64. При применении этого метода кодирования 6-битовые блоки двоичных данных преобразуются в 8-битовые блоки, воспринимаемые как текст ASCII .

    Поле Content-ID

Это поле заголовка используется для идентификации сеансов MIME по определенному идентификационному коду, когда содержимое имеет сложную структуру.

    Поле Content-Description

Поле заголовка Content-Description используется для текстового описания в формате ASCII данных, помещенных в почтовое сообщение. Это удобно при пересылке документов, созданных при помощи текстового процессора или графики, которые ничем не отличаются, будучи закодированными base64.

Поле заголовка Content-Type

    Поле заголовка Content-Type

В этом поле заголовка как раз и происходит основное действие нашей пьесы. Это поле идентифицирует данные, заключенные в MIME-сообщение. В настоящее время используется семь основных классов данных, идентифицированных в MIME. В каждом классе имеются свои подклассы, которые более детально характеризуют тип данных, заключенных в сообщении.

Тип данных text идентифицирует данные в формате ASCII , которые должны читаться в исходном виде. Здесь существует также два подкласса - plain-текст, т.е. неформатированный ASCII -текст, и enriched-текст, который включает в себя элементы форматирования, схожие с обогащенным текстовым форматом. Новейшие программы для работы с электронной почтой могут работать даже с обогащенным текстовым форматом (RTF).

Тип данных message позволяет почтовой программе отсылать простые сообщения в формате RFC 822. Подклассы этого типа: rfc822, который указывает на то, что вложением является обычное сообщение, соответствующее RFC 822; partial, который позволяет разбивать длинные сообщения на несколько частей, и external-body, который позволяет помещать указатель на объект, не являющийся частью сообщения.

Тип данных image определяет вложение в сообщение двоичных данных, которые представляют собой графическое изображение. В настоящее время для этого типа определено два подкласса - jpeg и gif.

Тип данных video, соответственно, определяет, что вложенные в сообщение данные представляют собой видеоданные. В настоящее время для этого типа определен только один подкласс - формат mpeg.

Тип данных audio обозначает содержимое сообщения как аудиоданные (звуковые файлы). Здесь также пока определен только один подкласс basic, который соответствует одному каналу ISDN с частотой дискретизации 8 Кгц.

Тип данных application соответствует двоичным данным, вложенным в сообщение, которые являются приложением (например, электронные таблицы Microsoft Excel или документы, созданные с помощью текстового процессора Microsoft Word). На сегодняшний день определено два подкласса такого рода данных - postscript и octet-stream. Довольно часто подкласс octet-stream используется при вложении в сообщение прикладных данных, таких как документы Microsoft Word или электронные таблицы Microsoft Excel.

Тип данных multipart идентифицирует сообщения, содержащие несколько различных типов данных. Этот формат довольно часто встречается в почтовых программах, поддерживающих вывод сообщения несколькими способами, например в виде текста ASCII , HTML -текста или аудиофайла. Граничный идентификатор разделяет различные типы данных. В то же время каждый тип данных идентифицируется определенным полем заголовка типа данных. Тип данных multipart имеет четыре подкласса.

Подкласс mixed указывает на то, что каждая из частей сообщения является независимой и все они должны быть представлены получателю в том порядке, в каком они были вложены отправителем. Подкласс parallel указывает то, что каждая из частей сообщения является независимой и все они могут быть представлены получателю в любом порядке. Следующий подкласс alternative указывает, что все части сообщения представляют собой одни и те же данные, но представленные в различном виде. При этом получатель может выбрать наилучшее средство для просмотра полученных данных. Подкласс digest во многом сходен с подклассом mixed, но при этом указывает, что тело сообщения всегда представляется в формате RFC822.

1 $ telnet localhost 25 2 Trying 127.0.0.1... 3 Connected to localhost. 4 Escape character is "^]". 5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3; Mon, 30 Aug 1999 07:36:58 -050 6 HELO localhost 7 258 shadrach.smallorg.org Hello localhost , pleased to meet you 8 MAIL FROM:rich@localhost 9 250 rich@localhost... Sender ok 10 RCPT TO:rich 11 250 rich... Recipient ok 12 DATA 13 354 Enter mail, end with "." on a line by itself 14 From:"Rich Blum" 15 To:"rich" 16 Subject:Formatted text message test 17 MIME-Version: 1.0 18 Content-Type: multipart/alternative; boundary=bounds1 19 20 –bounds1 21 Content-Type: text/plain; charset=us-ascii 22 23 This is the plain text part of the message that can 24 be read by simple e-mail readers. 25 26 –-bounds1 27 Context-Type: text/enriched 28 29 This is the rich text version of the SAME message. 30 31 –-bounds1-- 32 . 33 250 MAA04305 Message accepted for delivery 34 QUIT 35 221 shadrach.smallorg.org closing connection 36 Connection closed by foreign host. 37 You have new mail in /var/spool/mail/rich 38 $

Листинг 5.6. Пример сеанса SMTP с несколькими вложениями MIME (html, txt) Пример сообщения, представленный в листинге 5.6, является сообщением MIME, которое состоит из двух частей. В строке 18 показан тип данных сообщения. Тип multipart/alternative указывает на то, что в сообщении имеются различные типы данных, которые отделены граничным разделителем bounds1. Данные первого типа начинаются со строки 21 и представляют собой простой ASCII -текст, который может прочесть практически любая почтовая программа.

Данные второго типа начинаются со строки 27 и представляют собой форматированный текст с использованием обогащенного текстового формата.

Так как тип MIME, указанный для сообщения, - multipart/alternative, то определение того, какую версию вложения отобразить, всецело зависит от почтовой программы.

Расширенный протокол SMTP

С момента своего появления в 1982 году протокол SMTP прекрасно справлялся со своими задачами по пересылке сообщений между компьютерами в сети Internet. Однако со временем стали заметны заложенные в протокол ограничения. Тогда, вместо того чтобы заменить стандартный протокол, имевший к тому времени широкое распространение, было решено улучшить некоторые функции протокола SMTP. При этом было принято решение, оставив все спецификации SMTP в первозданном виде, лишь добавить к ним новые функции.

В 1995 году увидел свет документ RFC 1869, где был определен метод расширения возможностей протокола SMTP, который назывался "Расширенные службы SMTP".

Расширенный SMTP (Extended SMTP) реализован следующим образом. В начале сеанса SMTP команда HELO заменена на команду приглашения - EHLO. Получение сервером SMTP такой команды означает, что клиент может посылать ему расширенные SMTP команды. В листинге 5.7 показан пример сеанса с использованием EHLO , а также дополнительных команд.

1 $ telnet localhost 25 2 Trying 127.0.0.1... 3 Connected to localhost. 4 Escape character is "^]". 5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3; Mon, 30 Aug 1999 16:36:48 -050 6 EHLO localhost 7 250-shadrach.smallorg.org Hello localhost , pleased to meet you 8 250-EXPN 9 250-VERB 10 250-8BITMIME 11 250-SIZE 12 250-DSN 13 250-ONEX 14 250-ETRN 15 250-XUSR 16 250 HELP 17 HELP DSN 18 214-MAIL FROM: [ RET={ FULL || HDRS} ] [ ENVID= ] 19 214-RCPT TO: [ NOTIFY={NEVER,SUCCESS,FAILURE,DELAY} ] 20 214- [ ORCPT= ] 21 214- SMTP Delivery Status Notifications. 22 214-Descriptions: 23 214- RET Return either the full message or only headers. 24 214- ENVID Sender"s "envelope identifier" for tracking. 25 214- NOTIFY When to send a DSN. Multiple options are OK, comma - 26 214- delimited. NEVER must appear by itself. 27 214- ORCPT Original recipient. 28 214 End of HELP info 29 HELP ETRN 30 214-ETRN [ | @ | # ] 31 214- Run the queue for the specified , or 32 214- all hosts within a given , or a specially-named 33 214- (implementation-specific). 34 214 End of HELP info 35 QUIT 36 221 shadrach.smallorg.org closing connection 37 Connection closed by foreign host. 38 $

В строке 6 задана SMTP-команда EHLO для подключения к серверу SMTP. Строки 7–16 отображают ответ сервера. Заметьте, сервер сигнализирует о том, что для использования доступно больше команд, т.е. сеанс происходит в "расширенном" режиме. Одна из новых групп команд называется параметрами уведомления о доставке сообщения (Delivery Status Notification). Эти параметры могут использоваться с командами MAIL и RCPT для отображения состояния доставки определенного сообщения электронной почты. Однако для нас как администраторов почтовой системы наибольший интерес представляет команда ETRN.

Команда TURN уже упоминалась ранее. Эта команда весьма эффективна, но, к сожалению, небезопасна. Чтобы компенсировать этот недостаток, в RFC 1985 определена новая реализация команды TURN, которая обеспечивает больший уровень безопасности. Команда ETRN позволяет SMTP-клиенту выдавать запрос на SMTP-сервер для того, чтобы инициировать еще одно SMTP-соединение с клиентом для передачи ему сообщений. Единственное отличие команды ETRN от TURN заключается в том, что запрос поступает не на использование существующего соединения, а на открытие нового сеанса SMTP. Таким образом, SMTP-сервер может соединиться с клиентским компьютером с помощью обычных алгоритмов преобразования имен системы DNS . При этом открытие нового соединения основывается не на том имени, под которым клиентский компьютер регистрируется на сервере, а на реальном имени хоста клиента. В таком случае, если хакер установит несанкционированное SMTP-соединение и воспользуется командой ETRN, то сервер SMTP просто организует новое соединение с реальным клиентом и перешлет ему электронную почту. В результате, пострадавших нет. Формат команды ETRN следующий:

Здесь в роли name может выступать либо имя хоста, либо доменное имя (если поступает запрос на получение почты для всего домена). Команда ETRN весьма хорошее подспорье для администратора электронной почты. Если почту для вашего почтового сервера хранит провайдер Internet, то с помощью этой команды можно уведомить его о готовности к приему собранной для вас почты. Существует несколько способов реализации такого алгоритма. Один из них - использование специальной программы Perl, которая поставляется с программой sendmail. Ее работа как раз и заключается в том, что после установления соединения с провайдером Internet она выдает команду ETRN с именем вашего домена в качестве аргумента. Получив эту команду, сервер SMTP провайдера инициирует еще одно SMTP-соединение с вашим локальным SMTP-сервером (по тому же РРР-соединению) и отдает всю предназначенную для вашего домена почту, которая имеется у него в очереди на отправку.




Top