Бесконтактный тахометр-стробоскоп на Atmega8. DIY цифровой тахометр на AVR ATtiny2313, КР514ИД2 и оптопаре

Оценка 1 Оценка 2 Оценка 3 Оценка 4 Оценка 5

Данное устройство предназначено для измерения частоты вращения электродвигателей и главным преимуществом является бесконтактный метод измерения, основанный на стробоскопическом эффекте, где яркие световые импульсы производит светодиод высокой мощности. Для измерения необходимо установить частоту вспышек в соответствии с частотой вращения (при освещении стробоскопом объект кажется неподвижным), используя энкодер. Измерение может быть сделано без остановки вращающегося механизма. Тахометр построен на микроконтроллере ATmega8, а результат измерения отображается на ЖК-дисплее. Кроме того, система также показывает ошибку, которая появляется в результате некоторых временных процессов в программе. Управление осуществляется с помощью поворотного энкодера и небольшой клавиатуры. Все устройство может питаться от батарей, так как из-за импульсного характера генерации потребление энергии является незначительным. Весь прибор успешно уместился в популярном корпусе KM35 , где также есть место для 9В батареи.

Схема устройства

Сердцем прибора и ее наиболее важной частью является микроконтроллер U1 (ATMEGA8-16AU), который работает от кварцевого резонатора частотой 16 МГц (X1). Дополнительные конденсаторы С1(22pF) и С2(22pF) необходимы для правильной работы резонатора. Предусмотрен интерфейсный разъем программирования Prog, который содержит набор контактов для последовательного программирования. Разъем требуется, поскольку микроконтроллер выполнен в SMD корпусе. С5 (100 нФ) фильтры питания микроконтроллера. Конденсаторы С6(100 nF) и С7(100 nF) смягчают крутизну сигнала, генерируемого энкодером, что облегчает его бесперебойную работу в программе. Кнопки S1 - S6 (uSwitch) являются дополнительным клавиатурным блоком. Светодиод мощностью 0,5 W излучает вспышки света, рабочий ток ограничен резистором R4(30R / 2W) и управляется с помощью транзистора Т2(BC337) и резистора R3(330R). Светодиод подключается непосредственно к источнику питания без стабилизатора, чтобы минимизировать воздействие импульсов тока на микроконтроллер и уменьшить нагрузку на стабилизатор U2(78L05). Конденсаторы С3(220uF) и С4(47uf) необходимы для правильной работы стабилизатора. Индикация результатов измерения осуществляется на ЖК-дисплее (W1, 16x2). Контраст устанавливается потенциометром P1(10k), подсветка включается программно с помощью T1(BC556), R1(47R) и R2(3,3k).

Сборка

Прибор может быть успешно построен на основе печатной платы, которая доступна в архиве внизу страницы. Также доступа плата в зеркальном отображении. Плата проста в сборке, но включает в себя компоненты для пайки SMD, которые могут вызвать проблемы для начинающих радиолюбителей. Сборка должна быть начата с пайки двух перемычек. Далее должны быть установлены SMD конденсаторы и резисторы, они используются в популярных корпусах 0805(2x1.2mm). Далее, припаивается на место микроконтроллер U1, обратите внимание на правильность установки ключа. Кнопки должны иметь длину 15 мм и слегка выступать над ЖК дисплеем, это будет важно при установке платы в корпус. Точно так же и в случае с энкодером. Потенциометр Р1 установлен таким образом, чтобы его можно было регулировать через отверстие в боковой стенке корпуса. Плата разработана таким образом, что она легко помещается в популярном корпусе KM35.

Калибровка и измерение

После того как был написан первоначальный вариант кода и произведен расчет таймера делителя, измерения показали отклонение частоты генерируемых вспышек по отношению к теоретическим расчетам. Эта погрешность появляется из-за работы делителя таймера, равного 1, времени, которое необходимо для обслуживания прерывания, а иногда из-за перезагрузки значения таймера в регистрах. В приведенной ниже таблице, включены измерения частот, генерируемых на выходе (F_p) по отношению к частоте, которая должна быть теоретически (f_i) и соответствующие значения оборотов (умножаются на 10, чтобы получить точность установки в 0,1 об/мин).

Данные из таблицы делятся на два диапазона, первый от 60 до 480 об/мин и второй диапазон 480-42000 об/мин. Это разделение результат программы, в которой работают два диапазона измерения. Графики ниже показывают зависимость измеренных и теоретических данных:



В качестве калибровочной кривой была принята квадратичная зависимость:

y = a \cdot x^2 + b \cdot x +c

где у - обороты теоретические, х - измеренные обороты, а, b, c - коэффициенты в результате регрессии. Графики были выполнены в программе Gnuplot, и поправочные коэффициенты постоянные для двух областей работы системы представлены ниже:

Для диапазона 60-480 об/мин: a= 1.88622104239405e-006 b= 0.999905059864626 c= 0.189869882714651 Для диапазона 480-42000 об/мин: a= 2.54573967680295e-007 b= 0.996905226980814 c= 1.00037985789872

После вставки параметров устройство становится измерителем, а не только индикатором оборотов. В таблице ниже приведены результаты измерений частот генерируемых прибором в зависимости от набора на дисплее. Частота генерируется с ошибкой, равной доли процента от желаемого:

Печатные платы и внешний вид прибора

Программирование fuse-битов микроконтроллера

Данное устройство представляет из себя неплохой тахометр. Предел измерений 100 — 9990 об/мин. Точность измерения — ± 3 об/мин. Но для лучшего восприятия данные округляются. Данный прибор стоит у меня на авто — Таврия. Также устанавливалась на Chevrolet Cavalier, ВАЗ-2109, мотоцикл ЯВА-350 12-ти вольтовый, скутер Honda Lead 90.

Присутствуют две входных цепи:

  • вывод 6 (PD2) — вход прерывания INT0. Этот вход используется для измерения количества оборотов двигателя.
  • вывод 11 (PD6). Этот вход используется для уменьшения яркости индикаторов при включении габаритов на авто.

В схеме применён кварцевый резонатор на частоту 8MHz для большей точности и стабильности измерений.

Входной фильтр, использующийся для подключения к выводу катушки зажигания построен экспериментальным путём и на основании опыта и схемотехники аналогичных узлов. Показал себя отлично и в случае с контактным зажиганием, и в случае с электронным зажиганием.

Уменьшение яркости индикатора при включении габаритов необходимо для того, чтобы довольно яркий свет от индикатора не отвлекал водителя в тёмное время суток.

Печатная плата:

В собранном виде это выглядит вот так:

Рекомендую применять красный индикатор, т.к. его значительно лучше видно на солнце. Показания стают нечитаемыми только при прямом попадании яркого солнца. Этот эффект можно уменьшить или даже совсем от него избавиться если поставить индикатор за красный светофильтр, но у меня такого к сожалению не нашлось…

FUSES выставлены в проекте, но если кто-то шьёт не из CodeVisionAVR, то повторю их тут:

В проекте в 17-й строке есть следующее определение:

#define byBladeCnt 2 //1- две катушки, 2 — одна катушка, 4 — мотоцикл…

Для советских автомобилей и авто с распределительной системой зажигания этот параметр будет 2. Для систем зажигания с двумя катушками (как в ВАЗ-2110) — 1. На мотоцикле и мопеде (2-х тактная система зажигания) этот параметр равен 4.

Это была не моя задумка. Просто друг попросил придумать такое устройство, чтобы без проводов можно было бы считать обороты вала двигателя, для подстройки дизельной аппаратуры. И чтобы можно было в любом месте им воспользоваться.

Посидев и поразмышляв, придумал следующее:

Принцип работы простой: включаем ИК-светодиод, а на фотодиод принимаем отражение. Считаем время между приемами сигнала, переводим в обороты в минуту и выводим на экран. Питание, значит, батарейное.

В общем, не буду тянуть кота за..... :)

Был у меня микроконтроллер на тот момент такой - PIC16F88. Вот что получилось.

Схема устройства:

Я не стал заморачиваться с датчиком ИК сигнала. Хотя при желании можно было (и это для любознательных может послужить стимулом для усовершенствования J) воткнуть вместо фотодиода датчик TSOP1736 (который, собственно, был у меня в наличии на тот момент). Подавать на него 36 кГц можно, в принципе, с генератора, собранного на 555 таймере. Запускать генератор можно как раз сигналом, включающим ИК светодиод. Вот так как то… Причем, эксперименты такие я проводил. При подаче света с частотой 36 кГц на TSOP, его выход давал 5 вольт. При закрытии луча света, выход TSOP сбрасывался в ноль. Но, так как стояла задача собрать автономное устройство с минимальным потреблением, то тратить энергию на датчик и генератор я счел расточительным. К тому же, расстояние до измеряемого объекта было не особо критично. Устраивало расстояние даже в сантиметр. В общем, получилось так.

Питание ЖКИ - прямо с порта PIC, так же, как и питание LM358, для уменьшения энергопотребления в режиме sleep.

Живой платы первого опытного образца, к сожалению не осталось:(. Это была плата без усиления сигнала с фотоприемника. Сигнал поступал сразу в МК.

Выглядела плата так:

Так как уровня сигнала с фотоприемника не всегда хватало микроконтроллеру, то пришлось дополнять схему. Я собрал усилитель на LM358. Теперь схема выглядит именно так, как выглядит.

Подобрав корпус, и адаптировав под него плату, было собрано такое симпатичное устройство:


Принцип работы такой:

На исследуемый объект наносится метка обычным канцелярским корректором. Около 5-7 мм в диаметре. Либо приклеивается метка из белой бумаги.

При включении питания в первый раз, PIC начинает считать длительность периода между импульсами, которые, отражаясь от метки, приходят на фотоприемник. Если импульсов нет в течение примерно 4 секунд, показания сбрасываются на ноль. Если импульсы отсутствуют примерно 20 секунд, прибор переходит в режим пониженного потребления. Выключается индикатор. Для следующего измерения нужно нажать кнопку, подключенную к порту RB0. и прибор "просыпается". Цикл начинается сначала.

Точность показаний - отличная, но не на всем диапазоне. На высоких оборотах показания "плавают”, но незначительно, не критично.

Единственный минус этого прибора - не очень большая дальность. Около сантиметра. Но это решаемо, как я писал выше, с помощью фотоприемника типа TSOP1736 или TSOP1738 и генератора на 555 таймере. Надобность в LM358 в этом случае отпадает.

Еще одно уточнение - материал исследуемого объекта должен быть темным.

Архив с файлом протеуса и исходник лежит .

Вот кстати, нашел старый исходник, в котором реализован принцип подсчета импульсов с помощью модуля захвата, но индикатор там светодиодный. Но под LCD нетрудно переделать, проще будет

0

Ibrahim Kamal (IKALOGIC) Рассматриваемый бесконтактный тахометр - это компактное устройство на микроконтроллере ATMega48 производства компании Atmel, позволяющее измерять высокие скорости вращения бесконтактным способом. Для измерения используется ИК сенсор (оптопара, ИК светодиод и ИК фотодиод в одном корпусе). Вывод данных осуществляется на двухстрочный символьный ЖК дисплей на базе контроллера HD44780.

Принцип работы ИК сенсор (оптопара), представляющий собой миниатюрный компонент с ИК светодиодом и фотодиодом в одном корпусе, посылает ИК излучение на вращающийся механизм (вал, ротор двигателя), на котором должна быть небольшая отражающая наклейка.

Благодаря этой наклейке, каждый оборот вала вызывает появление отраженного импульса ИК излучения. Используемый сенсор производства компании Vishay Semiconductor имеет маркировку TCND-5000.

Данный сенсор был выбран после тестирования эквивалентных продуктов, так как его корпус обеспечивал оптическую изоляцию передающей и приемной части, а ИК светодиод выдерживает большие токи, что позволяет проводить измерения на больших расстояниях. Таким образом, используя оптопару мы можем подсчитать время полного оборота вала, а далее, зная время (обозначим это время T в секундах), мы можем вычислит количество оборотов в минуту, используя простое выражение 60/T. Получение данных от сенсора Для снижения стоимости устройства и сложности сборки, а также для повышения гибкости системы, мы непосредственно подключим ИК сенсор к микроконтроллеру и программно реализуем всю обработку получаемого сигнала. Сразу стоит заметить, что это не так просто, так как получаемый с ИК фотодиода сигнал содержит шумы, а внешнее освещение постоянно оказывает на него влияние. Таким образом, проблема состоит в том, чтобы разработать устройство с автоматической адаптацией к внешней освещенности и расстоянию до объекта измерения. На рисунке ниже изображена диаграмма аналогового сигнала от ИК сенсора (фотодиода)

Так как сигнал имеет шумы, при каждом определении наличия и отсутствия импульса (наличие импульса говорит о том, что вал вращается и сенсор «видит» отражающую наклейку), большое количество колебаний «вводит в заблуждение» микроконтроллер. Кроме того, эти факторы не позволяют использовать встроенный в микроконтроллер аналоговый компаратор, и нам необходимо ввести обработку аналогового сигнала перед каждой процедурой подсчета циклов. Решение было найдено в оценке средней интенсивности, основанную на максимальном и минимальном значении интенсивности сигнала от сенсора, и включением гистерезиса в районе средней интенсивности. Гистерезис используется для предотвращения многократного счета циклов зашумленных импульсов. Рисунок ниже поясняет работу такого алгоритма.

Когда сигнал нарастает от низкого состояния (отсутствует отражение от наклейки на валу) к высокому (отражение ИК импульса), алгоритм возьмет в расчет этот импульс высокого уровня лишь после того, как он пересечет «возрастающий уровень» гистерезиса, и примет в расчет низкий уровень лишь после того, как сигнал пересечет «спадающий уровень» гистерезиса. Такой алгоритм позволяет избежать ошибок вычислений, вызываемых шумным сигналом. Принципиальная схема устройства

Кликните для увеличения Схемотехническое решение очень простое и компактное (благодаря использованию миниатюрного сенсора), не содержит дорогостоящих компонентов. Питание устройства осуществляется от трех батарей типа AAA. Как вы, наверное, заметили, отсутствует потенциометр регулировки контрастности дисплея (что также позволяет уменьшить размер устройства). Это возможно благодаря программной реализации алгоритма автоматической подстройки контрастности в зависимости от уровня напряжения питания с применением ШИМ и фильтра низких частот на элементах R3, R4 и C2. Пользователи могут ознакомиться с текстом алгоритма в исходном коде ПО микроконтроллера во второй части статьи. Разъем JP1 предназначен для внутрисхемного программирования микроконтроллера. Разъем JP2 предназначен для подключения дополнительного пользовательского датчика. Список примененных компонентов Обозначение в схеме Наименование, номинал IC1 Микроконтроллер ATmega48 Q1, Q2 Транзистор BCW66G C1, C2 10 нФ C4, C5 33 пФ X1 Кварцевый резонатор 20 МГц R1, R2, R7 470 Ом R3 1 кОм R4 1.5 кОм R5 1 МОм R6 110 Ом R8 70 Ом LED3 Светодиод IR1 Оптопара TCND-5000 B1 Кнопка B2 Выключатель питания JP1 Разъем внутрисхемного программирования JP2 Разъем расширения Демонстрация работы бесконтактного тахометра на микроконтроллере AVR Во второй части статьи рассмотрим конструкцию прибора и основные моменты в программном обеспечении микроконтроллера, включая аналого-цифровое преобразование и организацию обмена данными с ЖК дисплеем.На английском языке: Contactless Tachometer on AVR. Part 1. SchematicПеревод: Vadim по заказу РадиоЛоцман

По материалам сайта




Top