10 простых схем зарядок литий ионных аккумуляторов. Как правильно заряжать аккумуляторы Li-ion: советы

В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.

Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых. Но в настоящее время никелевые аккумуляторы практически перестали использоваться и большинство производителей микросхем заряда либо полностью прекратило выпуск микросхем для никелевых батарей, либо выпускает микросхемы, инвариантные к технологии батареи (так называемые Multi-Chemistry IC). В номенклатуре компании STMicroelectronics в настоящее время присутствуют только микросхемы, предназначенные для работы с литиевыми аккумуляторами.

Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:

  • Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
  • Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
  • Отсутствует «эффект памяти», благодаря чему эта батарея проста в обслуживании: нет необходимости разряжать аккумулятор до минимума перед очередной зарядкой.

Недостатки литиевых батарей:

  • Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
  • Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.

Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу .

Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.

Рис. 1.

Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.

Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).

Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения. На этом этапе к батарее приложено постоянное напряжение 4,2 В, а ток, протекающий через батарею, в процессе заряда уменьшается от максимума до некоторого заранее заданного минимального значения. В тот момент, когда значение тока уменьшается до этого предела, заряд батареи считается законченным и процесс завершается.

Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С. Но это те параметры, которые можно считать оптимальными для конкретного типа батареи. В реальности одно и то же зарядное устройство может работать с аккумуляторами различных производителей и различной емкости, при этом емкость конкретной батареи остается для зарядного устройства неизвестной. Следовательно, заряд батареи любой емкости в общем случае будет происходить не в оптимальном для батареи режиме, а в режиме, предустановленном для зарядного устройства.

Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.

Микросхемы STBC08 и STC4054

Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа DFN6 и TSOT23-5L , соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры). Схемы включения STBC08 и STC4054 представлены на рисунке 2.

Рис. 2.

Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:

  • Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
  • Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*I BAT , то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:

I BAT = (V PROG /R PROG)*1000;

где I BAT — ток заряда в Амперах, R PROG — сопротивление резистора в Омах, V PROG — напряжение на выходе PROG, равное 1,0 Вольта.

  • В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
  • Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*I BAT . Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
  • Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
  • Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (U VLO), то зарядное устройство также отключится.
  • Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.

Микросхемы заряда батареи L6924D и L6924U

Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем L6924D и L6924U .

Рис. 3.

Рассмотрим те функциональные особенности микросхем L6924 , которые касаются задания параметров процесса заряда батареи:

1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность T PRG номиналом конденсатора, подключенного к выводу T PRG . Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения I END), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности T PRG . Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.

2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от I BAT , а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам I PRE и V PRE .

3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от I BAT . В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу I END . Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе V OUT с общепринятого значения 4,2 В до значения 4,1 В.

4. Значение максимального зарядного тока I PRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.

Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от I BAT . В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.

Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.

Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.

Рис. 4.

Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения , которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.

Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.

В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.

Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.

Микросхемы заряда аккумулятора STBC21 и STw4102

Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:

  • Линейный и квазиимпульсный режим.
  • Термистор, связанный с батареей, как ключевой элемент температурной защиты.
  • Возможность задания количественных параметров для всех трех фаз процесса зарядки.

Некоторые дополнительные возможности, отсутствовавшие в L6924:

  • Защита от неправильной полярности.
  • Защита от короткого замыкания.
  • Существенным отличием от L6924 является наличие цифрового интерфейса I 2 C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения STBC21 приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.

Рис. 5.

5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете:

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .



В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.



Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.

Первый аккумулятор на основе лития появился в 1991 г. Но только на фоне популяризации мобильных телефонов устройства Li-ion также получили широкую востребованность. На данный момент литиевые аккумуляторы используются всюду, где требуется автономное обеспечение работы электронного или технического устройства. Аккумуляторы снабжают энергией бытовую технику, электроинструмент, гаджеты и различное оборудование. За счет низкого порога саморазрядки, возможности восполнять энергию не дожидаясь полного расхода запаса питания и богатого ресурса батареи Li-ion способны поддерживать работу аппаратов, требующих высокую мощность.

Конструкция литиевой батареи

По конструкции Li-ion батареи производятся в призматическом и цилиндрическом исполнениях. Изготовление призматических аккумуляторов происходит путем накладывания пластин прямоугольной формы одна на другую. В таких моделях предусматривается более плотная упаковка по сравнению с цилиндрическими аналогами, но приходится интенсивнее обеспечивать сжимающие усилия в отношении электродов. Цилиндрическое устройство литиевого аккумулятора представляет собой упаковку с электродами и сепаратором, свернутую в рулон и заключенную в металлический каркас, соединяющийся с минусовым электродом. Плюсовой же электрод батареи выведен на крышку по специальному изолятору. К слову, рулонный принцип сборки используется и в некоторых версиях призматических моделей в виде эллиптической спирали. В такой конструкции объединяются преимущества обеих разновидностей литиевых аккумуляторов.

Почему не стоит доводить до «нуля»?

Специалисты не рекомендуют использовать аккумуляторы до полного расхода энергии. У литиевых устройств нет эффекта памяти, которым обладают другие виды батарей. На практике это означает, что необходимо заряжать аккумулятор до того, как его уровень опустится до нуля. Кстати, число циклов, по которым осуществляется зарядка литиевых аккумуляторов, является показателем долговечности источников питания - производители указывают эту цифру в маркировке.

К примеру, для качественных моделей количество циклов может составлять 600. В целях увеличения эксплуатационного срока батареи Li-ion стоит регулярно заряжать устройство. Оптимальный уровень, по достижении которого стоит начинать зарядку, составляет 15%. Данная мера способна увеличить число циклов до 1 100.

Как выполняется зарядка?

Литиевые батареи заряжаются по смешанной схеме, то есть сначала от постоянного тока в 1С до среднего показателя напряжения 4,2 В, а затем при постоянном уровне напряжения. Первичный этап по времени длится порядка 40 мин, а второй - дольше. Стоит отметить, что только аккумуляторы литиевые в современном исполнении могут заряжаться при напряжении до 4,2 В. Промышленные и военные модели батарей имеют более высокий эксплуатационный срок, чем стандартные модели, в результате чего порог окончания их заряда был отодвинут до 3,90 В.

Сколько времени требует зарядка?

Процесс выполнения зарядки литиевого элемента током 1С, как правило, занимает 2,5 ч. Аккумулятор Li-ion полностью восполняет энергию, когда уровень его напряжения соответствует аналогичным показателям отсечки. В это же время ток должен снижаться приблизительно на 3% относительно изначального заряда. Существует мнение, что аккумуляторы литиевые при увеличении тока заряжаются быстрее. На деле это не так, однако повышенный ток заряда способствует росту напряжения, при этом подзарядка с момента окончания первой стадии требует больше времени.

В некоторых разновидностях приборов зарядка литиевых аккумуляторов отнимает менее 1 ч. Сокращение времени обусловлено тем, что вторая стадия цикла отсутствует и сразу после завершения первого этапа аккумулятор можно использовать. Но есть один нюанс: батарея не полностью восполняет свой энергетический запас - он составляет лишь 70%.

Казалось бы, в чем смысл подобной схемы заряда? Такой подход выгоден, если требуется проведение нескольких циклов быстрой зарядки. Например, шуруповерт с литиевым аккумулятором на каждую операцию будет требовать по 30 мин, после чего можно ставить на зарядку текущий аккумулятор и продолжать работу с запасным (электроинструмент обычно комплектуется двумя батареями).

Зачем нужна перегрузка аккумулятора?

Начинать зарядку рекомендуется до того, как энергия сведена к нулю, тем не менее один раз в месяц все же стоит полностью разряжать После этого следует использовать оригинальное зарядное для литиевых аккумуляторов с целью 100-процентного восполнения энергии. Потребность в этой процедуре обусловлена особенностью батарей Li-ion. Опытные пользователи устройств, работающих на литиевых элементах, могли заметить, что индикация оставшегося заряда не всегда корректна. Например, экран планшета отображает, что аппарат разряжен лишь на 50% - на деле же «посадить» батарею могут всего 10 минут активной работы.

Для профилактики подобных нестыковок литиевые аккумуляторы следует полностью разряжать. В результате устройство сможет более точно рассчитать возможности источника питания и достоверно отобразить информацию на дисплее.

Сокращение энергопотребления в ходе зарядки

Хотя питание мобильных устройств и других гаджетов, для работы которых требуются аккумуляторы литиевые, несравнимо по энергозатратам с мощной бытовой техникой, несколько простых советов помогут не только сэкономить на электричестве, но и продлить ресурс аппаратов:

  • Применение возможностей программной начинки устройства для минимизации энергопотребления.
  • Отключение функций, которые работают без надобности. К примеру, интернет, различные сети и Bluetooth - по статистике, их совокупная работа способна на 30% сократить рабочее время устройства.
  • Оптимизировать настройки аппарата - затемнение подсветки, отключение лишних оповещений и звуковых эффектов позволит продлить работу гаджета на 10-15 мин. Это немного, но в критических ситуациях лишним не будет.

Правила сохранения литиевых аккумуляторов

Долговечность - одна из сильных сторон батарей Li-ion. Так, годовое снижение объема в результате саморазряда составляет не более 10%. Несмотря на это, в эксплуатации следует учитывать химические и конструкционные методы сбережения батарей от перегрева. Если современные аккумуляторы литиевые имеют предусмотренную защиту от неправильного подхода к зарядке, то температурные воздействия по-прежнему представляют для них опасность. Поэтому рекомендуется сокращать любые излишние нагревы аккумуляторов. Впрочем, и в этом направлении производители ведут работу. Использование катодных элементов, в частности, позволит увеличить термическую безопасность литиевых источников питания.

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает. Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы. Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут - же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга». Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками .

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей. Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.

В роли регулирующего элемента выступает транзистор Т1. Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт.

Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора. Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5. В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора.

Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.

Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.

3. Настройка выходного напряжения схемы.
Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).

4. Настройка зарядного тока схемы.
Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.

5. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.

6. Монтаж отлаженной схемы на рабочую плату
Переносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.

Зарядное устройство может быть собрано любым удобным способом, в том числе и навесным монтажом. При монтаже без ошибок и исправных деталях оно начинает работать сразу же после включения.

При подключении к зарядному устройству, разряженный аккумулятор начинает потреблять максимальный ток (ограниченный R2). При приближении напряжения аккумулятора к заданному, ток заряда будет падать и при достижении напряжения на аккумуляторе 4.2 вольта, зарядный ток будет практически нулевым.

Однако оставлять аккумулятор, подключенный к зарядному устройству на продолжительное время, не рекомендуется, т.к. он не любит перезаряда даже малым током и может взорваться или загореться.

Если устройство не работает, то необходимо проверить управляющий вывод (1) TL431 на наличие напряжения. Его значение должно быть не меньше 2,5 В. Это наименьшее допустимое значение опорного напряжения для этой микросхемы. Микросхема TL431 встречается довольно часто, особенно в БП компьютеров.

Практически у всех современных литий-ионных аккумуляторов отличная энергоёмкость, а также высокие малогабаритные показатели. Именно с их помощью можно питать устройства высокой мощности с наибольшей эффективностью. И совершенно не обязательно для этого покупать готовое зарядное устройство в магазине, ведь есть вариант более бюджетный, который особенно понравится радиолюбителям - собрать зарядное для литий-ионных аккумуляторов своими руками.

Меры предосторожности: перезаряд недопустим

Крайне важно перед началом сборки АКБ для батарей запомнить одну простую вещь - литиевые аккумуляторы строго запрещено перезаряжать. У них очень строгие требования к режиму зарядки и эксплуатации, поэтому их нельзя заряжать до напряжения больше 4,2 В. А ещё лучше руководствоваться информацией о безопасном пороге для каждой отдельно взятой банки. Кстати, там может быть указан даже меньший порог, который считается допустимым для этого экземпляра.

Ещё лучше, если вы собираетесь делать зарядку для литиевых аккумуляторов своими руками, несколько раз проверить используемые материалы и оборудование. Если у вас сомнения относительно точности показаний вашего вольтметра или происхождения банок, а также максимально допустимой мощности их заряда, лучше ставить порог ещё меньше. Оптимально будет в пределах 4.1–4.15 В. В этом случае заряжать АКБ, у которых нет встроенной платы защиты, будет безопасно для вас.

В противном случае велика вероятность сильного нагрева и вздутия банок, обильного выделения газа с резким неприятным запахом и даже их последующего взрыва. Проверьте все несколько раз перед тем, как приступать к сборке и зарядке.

Собираем зарядное устройство для литиевых аккумуляторов своими руками

Чтобы собрать зарядное устройство для литиевых аккумуляторов, достаточно будет одной упрощённой схемы. ЗУ, созданное по такой схеме, практически не нужно будет регулировать, а для работы вам понадобится:

  • Задать Uвых=4.2 В без подключённой батареи (с помощью R8);
  • Установить зарядный ток, используя R6 и R

В роли индикатора работы ЗУ отлично проявит себя светодиод типа «заряд». Он будет подсвечивать, если подключённый к нему аккумулятор разряжен , и погаснет, когда тот полностью зарядится.

Последовательность сбора зарядки литиевых аккумуляторов своими руками такова:

  1. подбираете подходящий корпус;
  2. крепите к нему блок питания (5 В) и элементы указанной схемы (обязательно в правильном порядке);
  3. берете латунь и вырезаете из неё две полоски, крепите их на гнёзда;
  4. используя гайку, устанавливаете расстояние между контактами и АКБ, которые собираетесь подключать;
  5. крепите переключатель, если хотите впоследствии иметь возможность изменять полярность на гнёздах (если - нет, оставляете все как есть).

Как собрать зарядку для литий-ионных аккумуляторов своими руками?

Поскольку Li-Ion батареи чувствительны к резкому напряжению во время зарядки , в фирменных АКБ встроены специальные микросхемы. Они обеспечивают контроль напряжения и не позволяют превышать допустимые пределы. Поэтому для того чтобы собрать зарядку для литиевых аккумуляторов 18650 своими руками, нужна более сложная схема, чем та, о которой шла речь выше.

Такой вариант АКБ будет создать намного сложнее, чем предыдущий и в домашних условиях это возможно, только если есть определённые навыки и соответствующий опыт. В теории вы сможете получить зарядное устройство , которое по характеристикам ничем не будет уступать фирменным АКБ. Но на практике это далеко не всегда так.




Top